函数综合问题是历年高考的热点和重点内容之一,一般难度较大,考查内容和形式灵活多样。学习函数要重点解决好四个问题:准确深刻地理解函数的有关概念;揭示并认识函数与其他数学知识的内在联系;把握数形结合的特征和方法;认识函数思想的实质,强化应用意识.
(一)准确、深刻理解函数的有关概念
概念是数学的基础,而函数是数学中最主要的概念之一,函数概念贯穿在中学代数的始终。数、式、方程、函数、排列组合、数列极限等是以函数为中心的代数。近十年来,高考试题中始终贯穿着函数及其性质这条主线。
(二)揭示并认识函数与其他数学知识的内在联系.
函数是研究变量及相互联系的数学概念,是变量数学的基础,利用函数观点可以从较高的角度处理式、方程、不等式、数列、曲线与方程等内容。在利用函数和方程的思想进行思维中,动与静、变量与常量如此生动的辩证统一,函数思维实际上是辩证思维的一种特殊表现形式.
(三)把握数形结合的特征和方法
函数图象的几何特征与函数性质的数量特征紧密结合,有效地揭示了各类函数和定义域、值域、单调性、奇偶性、周期性等基本属性,体现了数形结合的特征与方法,为此,既要从定形、定性、定理、定位各方面精确地观察图形、绘制图形,又要熟练地掌握函数图象的平移变换、对称变换.
(四)认识函数思想的实质,强化应用意识
函数思想的实质就是用联系与变化的观点提出数学对象,抽象数量特征,建立函数关系,求得问题的解决。纵观近几年高考题,考查函数思想方法尤其是应用题力度加大,因此一定要认识函数思想实质,强化应用意识。好了,今天就讲到这里,师姐给大家准备了学习干货,数学难点——函数的综合问题,大家可以看一看!