首页 > 考试 > 数学 > 小学数学 > 分数乘法及应用 > 正文 | 返回 打印 |
|
题型:填空题 难度:中档
答案
50×
50-20=30(人); 答:女生有20人,男生有30人. 故答案为:20,30人. |
据专家权威分析,试题“六(1)班有50人,女生占全班人数的25,女生有______人,男生有___..”主要考查你对 分数乘法及应用,指数与指数幂的运算(整数、有理、无理),对数函数的图象与性质 等考点的理解。关于这些考点的“档案”如下:
分数乘法及应用指数与指数幂的运算(整数、有理、无理)对数函数的图象与性质
考点名称:分数乘法及应用
分数的乘法:
分数的分子与分子相乘,分母与分母相乘,能约分的要先约分。做第一步时,就要想一个数的分子和另一个分母能不能约分。
分数与整数相乘就是把多个同样的数叠加,如2/3x2,就是指2个2/3相加,2/3x10是指10个2/3相加。
应用:
求一个数的几分之几是多少,用乘法来计算。
“求一个数的几倍是多少”和“求一个数的几分之几是多少”的数量关系是相同的。
一个数乘分数实际也是求这个数的几分之几倍,习惯上把“倍”省去,就说求这个数的几分这几。
特征:
已知条件表示单位“1”的量,单位“1”的几分之几。所求问题:求单位“1”的几分之几。
考点名称:指数与指数幂的运算(整数、有理、无理)
n次方根的定义:
一般地,如果xn=a,那么x叫做a的n次方根,其中n>1,且n∈N*。
分数指数幂的意义:
(1);
(2);
(3)0的正分数指数幂等于0,0的负分数指数幂没有意义。
n次方根的性质:
(1)0的n次方根是0,即=0(n>1,n∈N*);
(2)=a(n∈N*);
(3)当n为奇数时,=a;当n为偶数时,=|a|。
幂的运算性质:
(1);
(2);
(3);
注意:一般地,无理数指数幂(a>0,α是无理数)是一个确定的实数,上述有理指数幂的运算性质,对于无理指数幂都适用。
考点名称:对数函数的图象与性质
对数函数的图形:
对数函数的图象与性质:
对数函数与指数函数的对比:
(1)对数函数与指数函数互为反函数,它们的定义域、值域互换,图象关于直线y=x对称.
(2)它们都是单调函数,都不具有奇偶性.当a>l时,它们是增函数;当O<a<l时,它们是减函数.
(3)指数函数与对数函数的联系与区别:
对数函数单调性的讨论:
解决与对数函数有关的函数单调性问题的关键:一是看底数是否大于l,当底数未明确给出时,则应对底数a是否大于1进行讨论;二是运用复合法来判断其单调性,但应注意中间变量的取值范围;三要注意其定义域(这是一个隐形陷阱),也就是要坚持“定义域优先”的原则.
利用对数函数的图象解题:
涉及对数型函数的图象时,一般从最基本的对数函数的图象人手,通过平移、伸缩、对称变换得到对数型函数的图象,特别地,要注意底数a>l与O<a<l的两种不同情况,
底数对函数值大小的影响:
1.在同一坐标系中分别作出函数的图象,如图所示,可以看出:当a>l时,底数越大,图象越靠近x轴,同理,当O<a<l时,底数越小,函数图象越靠近x轴.利用这一规律,我们可以解决真数相同、对数不等时判断底数大小的问题.
2.类似地,在同一坐标系中分别作出的图象,如图所示,它们的图象在第一象限的规律是:直线x=l把第一象限分成两个区域,每个区域里对数函数的底数都是由右向左逐渐减小,比如分别对应函数,则必有
http://www.00-edu.com/ks/shuxue/1/fenshuchengfajiyingyong/2019-05-20/1132684.html十二生肖十二星座