零零教育信息网 首页 > 考试 > 数学 > 小学数学 > 正比例的意义,反比例的意义 > 正文 返回 打印

判断。(对的打“√”,错的打“×”)1.贝贝比丽丽多a个苹果,当贝贝给丽丽a个后,两人就一样多。[]2.方程x+=没有解。[]3.比的前项和后项都乘上或除以相同的数,比值不变。[]4.比例-六年级数学

[db:作者]  2019-08-06 00:00:00  零零社区

题文

判断。(对的打“√”,错的打“×”)       
1.贝贝比丽丽多a个苹果,当贝贝给丽丽a个后,两人就一样多。                 

[     ]

2.方程x+=没有解。

[     ]

3.比的前项和后项都乘上或除以相同的数,比值不变。

[     ]

4.比例尺一定,图上距离和实际距离成正比例。

[     ]

5.给一间房子的地面铺上正方形地砖,需用的块数和地砖的边长成反比例。

[     ]

6.当a=3时,a3=3a。

[     ]

7.用a元钱买了1千克苹果,苹果的单价是元。

[     ]

8.用小木棒照下图搭正方形,搭一个用4根,搭两个用7根,搭a个用4a根。

[    ]

题型:判断题  难度:中档

答案

1.×;2.×;3.×;4.√;5.×;6.×;7.×;8.×

据专家权威分析,试题“判断。(对的打“√”,错的打“×”)1.贝贝比丽丽多a个苹果,当贝贝给丽..”主要考查你对  正比例的意义,反比例的意义,找规律,用字母表示数,解方程,比的应用  等考点的理解。关于这些考点的“档案”如下:

正比例的意义,反比例的意义找规律用字母表示数解方程比的应用

考点名称:正比例的意义,反比例的意义

  • 正比例:
    两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量相对应的两个数的比值(也就是商)一定,这两种量就叫做成正比例的量,它们的关系叫做正比例关系,正比例的图像是一条直线;
    用字母表示为如果用字母x和y表示两种相关联的量,用k表示它们的比值(一定),正比例关系可以用以下关系式表示:=k(一定);
    正比例关系两种相关联的量的变化规律:同时扩大,同时缩小,比值不变.正比例和反比例

    反比例:
    两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量相对应的两个数的积一定,这两种量就叫做成反比例的量,它们的关系叫做反比例关系;
    如果用字母x和y表示两种相关联的量,用k表示它们的积,反比例关系可以用下面关系式表示:xy=k(一定)。

  • 反比例的意义:
    成反比例的量包括三个数量,一个定量和两个变量。研究两个变量之间的扩大(或缩小)的变化关系。一种量发生变化,引起另一种量发生相反的变化。这两种量是反比例的量,它们的关系成反比例关系。
    成反比例的量:
    前提:两种相关的量(乘法关系)
    要求:一个量变化,另一个量也随着变化,并且,这两个量中相对应的两个数的乘积一定。
    结论:这两个量就叫做反比例的量,它们的关系叫做反比例关系。

  • 正比例和反比例关系:
    相同点:
    ①正比例和反比例都含有三个数量,在这三个数量中,均有一个定量、两个变量。
    ②在正、反比例的两个变量中,均是一个量变化,另一个量也随之变化。并且变化方式均属于扩大(乘以一个数)或缩小(除以一个数)若干倍的变化。
    不同点:
    ①正比例的定量是两个变量中相对应的两个数的比值。反比例的定量是两个变量中相对应的两个数的积。
    ②正比例的图像时上升直线;反比例是曲线。
    ③公式不同:正比例是(=k(一定)),反比例是(xy=k(一定))。
    ④规律不同:正比例是一个数缩小,另一个数也缩小,一个数扩大,另一个数也扩大;反比例是一个数缩小,另一个数就扩大,一个数扩大另一个数就缩小。 

  • 判断两种量成正比例、反比例或不成比例的方法:
    (1)找出两种相关联的量。
    (2)根据两种相关联的量之间的关系列出数量关系式。
    (3)如果两种量中相对应的两个数的比值(也就是商)一定,就是成正比例的量;若积一定,就是反比例的量。

考点名称:找规律

  • 学习目标:
    1、通过观察、实验、猜测、推理等活动发现图形的排列规律。
    2、培养初步的观察、推理能力。

  • 知识点拨:
    在日常生活中,我们经常会碰到许多按一定顺序排列的数(或图形)。只要我们从不同的角度去分析研究,善于观察、分析、总结,就能发现规律,找到解决问题的方法。
    找规律填数关键是根据已知的数找出数与数之间的规律。看相邻两数的倍数关系、差是常用的观察方法。
    寻找数列的规律,通常从两个方面来考虑:
    (1)寻找各项与项数间的关系;
    (2)考虑相邻项之间的关系,然后,再总结出一般的规律。

考点名称:用字母表示数

  • 用字母表示数:
    含有字母的式子不仅可以表示数量关系,也可以表示数量。还可以简明、概括地表达运算定律和计算公式,方便研究和解决实际问题。
    ①含有字母的式子中,数字和字母、字母和字母相乘时,乘号可以记作“·”,也可以省略不写。
    ②在省略乘号的时候,应当把数字写在字母的前面。
    ③当“1”和任何字母相乘时,“1”可以省略不写。
    ④由于字母可以表示任何数,在一些式中,对字母表示数的要运行说明,如: (a≠0)。
    ⑤因为字母表示的是数,所以在式子中每一个字母都不注明单位名称,计算结果也不注明单位名称,只在答句中写上单位名称。

    用字母表示数的意义:

    有助于揭示概念的本质特征,能使数量之间的关系更加简明,更具有普遍意义。使思维过程简约化,易于形成概念系统。

考点名称:解方程

  • 解方程:
    使方程左右两边相等的未知数的值叫做方程的解。
    求方程的解的过程叫做解方程。
    方程的解是一个值,解方程是求方程的解的演算过程。
    检验方法:
    求出未知数的值分别代入原方程的两边计算(即含有字母的式子的值),如果原方程等号左右两边相等,则所求得的未知数的值是原方程的解。

  • 解方程依据
    方程依靠等式各部分的关系,和加减乘除各部分的关系:
    加数+加数=和,和-其中一个加数=另一个加数,差+减数=被减数,
    被减数-减数=差,被减数-差=减数,
    因数×因数=积,积÷一个因数=另一个因数,
    被除数÷除数=商,被除数÷商=除数,商×除数=被除数。

考点名称:比的应用

  • 比的应用:
    根据各部分的比,确定各部分与总量之间的关系,即各部分占总量的几分之几,然后按照“求一个数(这里指分配的量)的几分之几是多少”的问题解答。
    一般单位要统一,注意比的前后要一致,就是等号两边都是图上距离与实际距离的比,或者是反过来,再就是注意大的比大的,等于小的比小的。



http://www.00-edu.com/ks/shuxue/1/zhengbilideyiyifanbilideyiyi/2019-08-06/1232603.html十二生肖
十二星座