零零教育信息网 首页 > 考试 > 数学 > 小学数学 > 解比例,比例的应用题 > 正文 返回 打印

下面是南枫和同学们用自制的弹簧秤称量的物体质量的统计图。(弹簧最多可称出质量为2000g的物体)。(1)把表格填完整。所称质量0200400600800900…a(a<2000)弹簧伸长长度(cm-六年级数学

[db:作者]  2019-08-06 00:00:00  互联网

题文

下面是南枫和同学们用自制的弹簧秤称量的物体质量的统计图。(弹簧最多可称出质量为2000g的物体)。

(1)把表格填完整。
所称质量 0 200 400 600 800 900 a(a<2000)
弹簧伸长长度(cm) 0 2
(2)你发现哪个量与哪个量成什么比例? 
(3)南枫用这个弹簧秤称一本书,弹簧长23cm,求 这本书的质量?
题型:解答题  难度:中档

答案

(1)4;6;8;9;;(2)弹簧伸长的长度与所称物体的质量成正比例;(3)1500g

据专家权威分析,试题“下面是南枫和同学们用自制的弹簧秤称量的物体质量的统计图。(弹簧..”主要考查你对  解比例,比例的应用题,比例的意义,比例的基本性质,正比例的意义,反比例的意义  等考点的理解。关于这些考点的“档案”如下:

解比例,比例的应用题比例的意义,比例的基本性质正比例的意义,反比例的意义

考点名称:解比例,比例的应用题

  • 解比例:
    求比例中的未知项,叫做解比例。
    根据比例的基本性质(即交叉相乘),如果已知比例中的任何三项,就可以求出这个比例中的另外一个未知项。求比例中的未知项,叫做解比例。解比例是利用比例的基本性质:在比例中,两个外项的积等于两个内项的积。再转化成方程。

    比例应用题:
    是小学六年级奥数中的一个重要内容。它既是整数应用题的继续与深化,又是学习更多数学知识的重要基础,同时,这类题又有着自身的特点和解题的规律。在处理几个量的倍比关系时,比例应用题与分数百分数应用题间有很多相似之处,但利用比例处理问题要方便灵活得多。 
    要解决好此类问题,须注意灵活运用画线段示意图等手段,多角度、多侧面思考问题。在解题过程中,要善于掌握对应、假设、转化等多种解题方法,在寻找正确的解题方法的同时,不断地开拓解题思路。

  • 用比例方法解应用题的一般步骤:

考点名称:比例的意义,比例的基本性质

  • 表示两个比相等的式子叫做比例。
    比例的基本性质:
    组成比例的四个数,叫做比例的项。两端的两项叫做比例的外项,中间的两项叫做比例的内项。
    在比例里,两个外项的积等于两个内项的积。
    用字母表示为:如果 (a,b, c,d  都不等于零),那么ad=bc.
    这是因为用bd去乘的两边,得?bd=?bd,所以ad=bc.

  • 性质推论:
    从比例的这个基本性质,可以推得:
    如果两个数的积等于另外两个数的积,那么这四个数可以组成比例。
    用式子表示就是:如果ad=bc,那么(b.d都不等于零)。
    这是因为用bd 去除ad=bc两边,得 ,所以

    比例意义:
    正比例的意义:
    两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量相对应的两个数的比值(也就是商)一定,这两种量就叫做成正比例的量,它们的关系叫做成正比例关系。
    正比例关系两种相关联的量的变化规律:同时扩大,同时缩小,比值不变。

    反比例的意义:
    成反比例的量包括三个数量,一个定量和两个变量。研究两个变量之间的扩大(或缩小)的变化关系。一种量发生变化,引起另一种量发生相反的变化。这两种量是反比例的量,它们的关系成反比例关系。
    反比例实质:
    两种相关联的量,一种量变化,另一种量也随着变化,这两种量中相对应的两个数的积一定。这两种量叫做成反比例的量。它们的关系叫做反比例关系。

考点名称:正比例的意义,反比例的意义

  • 正比例:
    两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量相对应的两个数的比值(也就是商)一定,这两种量就叫做成正比例的量,它们的关系叫做正比例关系,正比例的图像是一条直线;
    用字母表示为如果用字母x和y表示两种相关联的量,用k表示它们的比值(一定),正比例关系可以用以下关系式表示:=k(一定);
    正比例关系两种相关联的量的变化规律:同时扩大,同时缩小,比值不变.正比例和反比例

    反比例:
    两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量相对应的两个数的积一定,这两种量就叫做成反比例的量,它们的关系叫做反比例关系;
    如果用字母x和y表示两种相关联的量,用k表示它们的积,反比例关系可以用下面关系式表示:xy=k(一定)。

  • 反比例的意义:
    成反比例的量包括三个数量,一个定量和两个变量。研究两个变量之间的扩大(或缩小)的变化关系。一种量发生变化,引起另一种量发生相反的变化。这两种量是反比例的量,它们的关系成反比例关系。
    成反比例的量:
    前提:两种相关的量(乘法关系)
    要求:一个量变化,另一个量也随着变化,并且,这两个量中相对应的两个数的乘积一定。
    结论:这两个量就叫做反比例的量,它们的关系叫做反比例关系。

  • 正比例和反比例关系:
    相同点:
    ①正比例和反比例都含有三个数量,在这三个数量中,均有一个定量、两个变量。
    ②在正、反比例的两个变量中,均是一个量变化,另一个量也随之变化。并且变化方式均属于扩大(乘以一个数)或缩小(除以一个数)若干倍的变化。
    不同点:
    ①正比例的定量是两个变量中相对应的两个数的比值。反比例的定量是两个变量中相对应的两个数的积。
    ②正比例的图像时上升直线;反比例是曲线。
    ③公式不同:正比例是(=k(一定)),反比例是(xy=k(一定))。
    ④规律不同:正比例是一个数缩小,另一个数也缩小,一个数扩大,另一个数也扩大;反比例是一个数缩小,另一个数就扩大,一个数扩大另一个数就缩小。 

  • 判断两种量成正比例、反比例或不成比例的方法:
    (1)找出两种相关联的量。
    (2)根据两种相关联的量之间的关系列出数量关系式。
    (3)如果两种量中相对应的两个数的比值(也就是商)一定,就是成正比例的量;若积一定,就是反比例的量。



http://www.00-edu.com/ks/shuxue/1/jiebilibilideyingyongti/2019-08-06/1236078.html十二生肖
十二星座