题文
[ ]
答案
据专家权威分析,试题“慧眼识真。(对的打“√”,错的打“×”)1.“有可能”并不是“一定”或者“百..”主要考查你对 扇形统计图,折线统计图,可能性,概率 等考点的理解。关于这些考点的“档案”如下:
扇形统计图折线统计图可能性,概率
考点名称:扇形统计图
扇形统计图特点:通过扇形的大小来反映各个部分占总体的百分之几。扇形统计图可以更清楚的了解各部分数量同总数之间的关系。扇形统计图可以让一些杂乱无章的数据变得清晰透彻,使人看上去一目了然,利于计算各种数据,变得更加方便,快捷!
扇形统计图作用:能清楚地了解各部分数与总数之间的关系与比例。(比例:表示两个比相等的式子叫做比例的基本性质)扇形面积与其对应的圆心角的关系是:扇形面积越大,圆心角的度数越大。扇形面积越小,圆心角的度数越小。扇形所对圆心角的度数与百分比的关系是:圆心角的度数=百分比×360度扇形统计图还可以画成圆柱形的。
考点名称:折线统计图
考点名称:可能性,概率
可能性:是指事物发生的概率,是包含在事物之中并预示着事物发展趋势的量化指标。有些事件的发生是确定的,有些是不确定的。用“可能”、“不可能”“一定”等表达事物发生的情况。 常见方法有:抛骰子、摸球、转盘。概率:又称或然率、机会率或机率、可能性,是数学概率论的基本概念,是一个在0到1之间的实数,是对随机事件发生的可能性的度量。
随机事件:有些事件在一定的条件下可能发生,也可能不发生,结果不确定。例如,购买彩票能否 中奖,开出的列车能否正点到达。明年今天是否下雨等待,我们称之为随机事件。 我们用随机事件的“概率”来表示随机事件发生可能性大小:概率是0到1之间的一个数,概率随机事件发生的可能性大。在小学阶段我们只计算最简单的一些随机事件的概率,这种计算方法以“等可能性”为基础。在有些情况下,虽然有些事情的结果是不确定的(随机性的),但是由于某种“对称性”,不同的基本结果发生的可能性是相同的,这时,我们说这些基本结果是等可能的,从而确定相关事件的概率。例如:投一枚均匀硬币,“出现正面”“出现反面”这两种基本结果是等可能的,所以“出现正面”和“出现反面”的概率都是1/2;投一枚色子(骰子),“出现1点”“出现2点”......“出现6点”这六种基本情况是等可能的,其概率是1/6 。对于随机事件,我们关心的是事件发生的可能性。 事件发生的可能性大小是可以比较的,所以人们常说一件事情“不可能”""不大可能”“很可能”“非常可能”“绝对可能”......这些说法反应可能性大小的不同程度。 射击时,“射中十环”的可能性比“射中九环”的可能性小;一分钟投篮,“投中15个”比“投中10个”的可能性小