零零教育信息网 首页 > 考试 > 物理 > 初中物理 > 浮力及阿基米德原理 > 正文 返回 打印

用一只量筒、水、一根细针做实验,来测木块的某些物理量,下列说法中正确的是()A.只能测木块的体积B.只能测木块的浮力C.只能测木块的体积、质量、密度D.木块的体积、密度、质-物理

[db:作者]  2020-05-30 00:00:00  互联网

题文

用一只量筒、水、一根细针做实验,来测木块的某些物理量,下列说法中正确的是(  )
A.只能测木块的体积
B.只能测木块的浮力
C.只能测木块的体积、质量、密度
D.木块的体积、密度、质量、浮力都能测
题型:单选题  难度:中档

答案

用针扎着木块浸没入量筒的水中,可测出它排开水的体积,也就是木块的体积;同时根据排水的体积,利用浮力的公式可算出木块受到的水的浮力;根据木块漂浮时排水的体积,可测出漂浮时受的浮力,此时的浮力就等于木块的重力,根据G=mg可求出木块的质量;有了质量和体积,根据公式ρ=
m
V
可求出木块的质量.因此,通过分析可知木块的体积、密度、质量、浮力都可以求出.
故选D.

据专家权威分析,试题“用一只量筒、水、一根细针做实验,来测木块的某些物理量,下列说..”主要考查你对  浮力及阿基米德原理,密度公式的应用,固体密度的测量  等考点的理解。关于这些考点的“档案”如下:

浮力及阿基米德原理密度公式的应用固体密度的测量

考点名称:浮力及阿基米德原理

  • 浮力:
    (1)定义:浸在液体中的物体受到向上托的力叫做浮力。
    (2)施力物体与受力物体:浮力的施力物体是液体 (或气体),受力物体是浸入液体(或气体)中的物体。
    (3)方向:浮力的方向总是竖直向上的。
    阿基米德原理:
    (1)原理内容:浸在液体里的物体受到液体竖直向上的浮力,浮力的大小等于它排开的液体受到的重力。
    (2)公式:,式中ρ表示液体的密度,V是被物体排开的液体的体积,g取9.8N/kg。

  • 浮力大小跟哪些因素:
    有关浸在液体中的物体受到浮力的大小,跟物体浸入液体中的体积有关,跟液体的密度有关,跟物体浸入液体中的深度无关。跟物体本身密度大小无关。

  • 阿基米德原理的五点透析:
    (1)原理中所说的“浸在液体里的物体”包含两种状态:一是物体的全部体积都浸入液体里,即物体浸没在液体里;二是物体的一部分体积浸入液体里,另一部分露在液面以上。

    (2)G指被物体排开的液体所受的重力,F= G表示物体受到的浮力的大小等于被物体排开的液体的重力。

    (3)V是表示被物体排开的液体的体积,当物体全部浸没在液体里时,V=V;当物体只有一部分浸入液体里时,则V<V

    (4)由可以看出,浮力的大小只跟液体的密度和物体排开液体的体积这两个因素有关,而跟物体本身的体积、密度、形状、在液体中的深度、液体的多少等因素无关。

    (5)阿基米德原理也适用于气体,但公式中ρ应该为ρ

    控制变量法探究影响浮力大小的因素:
         探究浮力的大小跟哪些因素有关时,用“控制变量法”的思想去分析和设计,具体采用“称量法”来进行探究,既能从弹簧测力计示数的变化中体验浮力,同时,还能准确地测出浮力的大小。
    例1小明在生活中发现木块总浮在水面,铁块却沉入水底,因此他提出两个问题:
    问题1:浸入水中的铁块是否受到浮力?
    问题2:浮力大小与哪些因素有关?
    为此他做了进一步的猜想,设计并完成了如图所示实验,
    (1)(b)、(c)图中弹簧测力计示数均小于(a)图中弹簧测力计示数,说明浸入水中的铁块__(选填 “受到”或“不受到”)浮力;
    (2)做___(选填字母)两次实验,是为了探究铁块浸没在水中时所受浮力大小与深度是否有关;
    (3)做(d)、(e)两次实验,是为了探究浮力大小与 __的关系。

    解析(1)物体在水中时受到水向上托的力,因此示数会变小。
    (2)研究浮力与深度的关系时,应保持V和ρ不变,改变深度。
    (3)在V不变时,改变ρ,发现浮力大小改变,说明浮力大小与ρ有关。
    答案(1)受到(2)(c)、(d)(3)液体密度

    公式法求浮力:
         公式法也称原理法,根据阿基米德原理,浸入液体中的物体受到向上的浮力,浮力的大小等于物体排开的液体受到的重力(表达式为:F=GgV)。此方法适用于所有浮力的计算。
    例1一个重6N的实心物体,用手拿着使它刚好浸没在水中,此时物体排开的水重是10N,则该物体受到的浮力大小为____N。
    解析由阿基米德原理可知,F=G=10N。
    答案10

    实验法探究阿基米德原理:
         探究阿基米德原理的实验,就是探究“浮力大小等于什么”的实验,结论是浮力的大小等于物体排开液体所受的重力。实验时,用重力差法求出物体所受浮力大小,用弹簧测力计测出排开液体重力的大小,最后把浮力与排开液体的重力相比较。实验过程中注意溢水杯中的液体达到溢口,以保证物体排开的液体全部流入小桶。
    例1在探究“浮力大小等于什么”的实验中,小明同学的一次操作过程如图所示。

     (1)测出铁块所受到的重力G铁;
    (2)将水倒入溢水杯中;
    (3)把铁块浸入溢水杯中,读出弹簧测力计示数F;
    (4)测出小桶和被排开水的总重力G;
    (5)记录分析数据,归纳总结实验结论,整理器材。
    分析评估小明的实验,指出存在的问题并改正。
    解析:在探究“浮力大小等于什么”的实验中,探究的结论是浮力的大小等于物体排开的液体所受到的重力,所以实验时,需要用弹簧测力计测出铁块受到的浮力和它排开水的重力进行比较得出结论,因此实验过程中需要测空小桶的重力G,并且将溢水杯中的水加至溢水口处。
    答案:存在的问题:
    (1)没有测空小桶的重力 (2)溢水杯的水量不足
    改正:(1)测空小桶的重力G(2)将溢水杯中的水加至溢水口处

  • 浮力知识梳理:

  • 曹冲称象中的浮力知识:
       例曹冲利用浮力知识,巧妙地测出了大象的体重。请你写出他运用的与浮力有关的知识_____、 ____,另外,他所用到的科学研究方法是:_____和______.
      
       解析:曹冲称象的过程是首先把大象放在船上,在水面处的船舷上刻一条线,然后把大象牵上岸。再往船上放入石块,直到船下沉到船舷上的线再次与水面相平时为止,称出此时船上石头的质量即为大象的质量。两次船舷上的线与水面相平,根据阿基米德原理可知,为了让两次船排开水的体积相同,进而让两次的浮力相同,再根据浮沉条件,漂浮时重力等于浮力可知:船重+大象重=船重+石头重,用多块石头的质量替代了不可拆分的大象的质量,这是等效替代法在浮力中的一个典型应用。
     
       答案:浮沉条件  阿基米德原理  等效替代法化整为零法

考点名称:密度公式的应用

  • 密度公式的应用:
    (1)利用m=ρV求质量;利用V=m/ρ求体积

    (2)对于密度公式,还要从以下四个方面理解
    ①同种物质,在一定状态下密度是定值,它不随质量大小或体积大小的改变而改变。当其质量(或体积)增大几倍时,其体积(或质量)也随着增大几倍,而比值是不变的。因此,不能认为物质的密度与质量成正比,与体积成反比;
    ②具有同种物质的物体,在同一状态下,体积大的质量也大,物体的体积跟它的质量成正比;
    ③具有不同物质的物体,在体积相同的情况下,密度大的质量也大,物体的质量跟它的密度成正比

    ④具有不同物质的物体,在质量相同的条件下,密度大的体积反而小,物体的体积跟它的密度成反比

  • 密度公式的应用:
    1. 有关密度的图像问题
    此问题一般是给出质量一体积图像,判断或比较物质密度。解答时可在横坐标(或纵坐标)任选一数值,然后在纵坐标(或横坐标)上找到对应的数值,进行分析比较。
     例1如图所示,是甲、乙两种物质的m一V图像,由图像可知(   )
    A.ρ
    B.ρ
    C.ρ
    D.无法确定甲、乙密度的大小

    解析:要从图像直接看出甲、乙两种物质的密度大小目前还做不到,我们要先借助图像,根据公式ρ =总结规律后方可。
    如图所示,在横轴上任取一点V0,由V0作横轴的垂线V0B,分别交甲、乙两图线于A、B两点,再分别从A、B两点作纵轴垂线,分别交纵轴于m、m两点。则甲、乙两种物质的密度分别为,ρ= ,因为m<m,所以ρ甲<ρ乙,故C正确。

    2. 密度公式ρ =及变形、m=ρV的应用:
    密度的公式是ρ =,可得出质量计算式m=ρV 和体积计算式。只要知道其中两个物理量,就可以代入相应的计算式进行计算。审题时注意什么量是不变的,什么量是变化的。
    例2某瓶氧气的密度是5kg/m3,给人供氧用去了氧气质量的一半,则瓶内剩余氧气的密度是_____;容积是10L的瓶子装满了煤油,已知煤油的密度是 0.8×103kg/m3,则瓶内煤油的质量是_____,将煤油倒去4kg后,瓶内剩余煤油的密度是______。
     解析:氧气用去一半,剩余部分仍然充满整个氧气瓶,即质量减半体积不变,所以氧气的密度变为 2.5kg/m3。煤油倒去一半后,体积质量同时减半,密度不变。
    答案:2.5kg/m3;8kg;0.8×10kg/m3

    3. 比例法求解物质的密度
       利用数学的比例式来解决物理问题的方法称之为 “比例法”。能用比例法解答的物理问题具备的条件是:题目所描述的物理现象,由初始状态到终结状态的过程中至少有一个量保持不变,这个不变的量是由初始状态变成终结状态的桥梁,我们称之为“中介量”。
    例3甲、乙丽个物体的质量之比为3:2,体积之比为l:3,那么它们的密度之比为(   )
    A.1:2B.2:1C.2:9D.9:2
    解析:(1)写出所求物理量的表达式:
    (2)写出该物理量比的表达式:

    (3)化简:代入已知比值的求解:


    密度、质量、体积计算中的“隐含条件” 问题:
      很多物理问题中的有些条件需要仔细审题才能确定,这类条件称为隐含条件。因此寻找隐含条件是解决这类问题的关键。以密度知识为例,密度计算题形式多样,变化灵活,但其中有一些题具有这样的特点:即质量、体积、密度中的某个量在其他量发生变化时保持不变,抓住这一特点,就掌握了求解这类题的规律。

    1.隐含体积不变
    例1一个瓶子最多能装0.5kg的水,它最多能装_____kg的水银,最多能装_____m3的酒精。 ρ水银=13.6×103kg/m3,ρ水=1.0×103kg/m3,ρ酒精= 0.8×103kg/m3)
    解析:最多能装即装满瓶子,由最多装水量可求得瓶子的容积为V=5×10-4m3,则装水银为m水银=13.6×103kg/m3×5×10-4m3=6.8kg。装酒精的体积为瓶子的容积。
    答案6.8;5×10-4

    2. 隐含密度不变
    例2一块石碑的体积为V=30m3,为测石碑的质量,先取了一块刻制石碑时剔下来的小石块作为样品,其质量是m=140g,将它放入V1=100cm3的水中后水面升高,总体积增大到V2=150cm3,求这块石碑的质量m
    解析:此题中隐含的条件是石碑和样品是同种物质,密度相同,而不同的是它们的体积和质量。依题意可知,样品体积为:
    V=V2-V1=150cm3一100cm3=50cm3 =5.0×10-5m3
    =84t
    答案:84t

    3. 隐含质量不变
    例3质量为450g的水结成冰后,其体积变化了 ____m3。(ρ水=0.9×103kg/m3)
    解析:水结成冰后,密度减小,450g水的体积为,水结成冰后,质量不变,因此冰的体积为=500cm3=5.0×10-4m3=5.0× 10-4m3一4.5×10-4m3=5×10-5m3

    合金物体密度的相关计算:
         首先要抓住合金体的总质量与总体积分别等于各种物质的质量之和与体积之和这一特征,然后根据具体问题,灵活求解。
    例两种不同的金属,密度分别为ρ1、ρ2:
    (1)若墩质量相等的金属混合后制成合金,则合金的密度为____。
    (2)若取体积相等的金属混合后制成合金,则合金的密度为_____。
    解析:这道题的关键是抓住“两总”不变,即总质量和总体积不变。在(1)中,两种金属的质量相等,设为m1=m2=m,合金的质量m=2m,则密度为ρ1的金属的体积V1=,密度为ρ2的金属的体积V2=,合金的体积,则合金的密度
    在(2)中两种金属的体积相等,设为,合金的体积,密度为ρ1的金属的质量m1=,密度为ρ2的金属的质量为,合金的质量m总,合金的密度为
    答案:
    注意:上述规律也适用于两种液体的混合,只要混合液的总质量和总体积不变即可。

考点名称:固体密度的测量

  • 测量密度的原理:
    原理:由密度公式可知,要测量某种物质的密度,需要测量由这种物质构成的物体的质量的体积。

    测量方法:
    1. 形状规则的固体:质量可用天平测量,体积可直接用刻度尺测长、宽、高等,并利用体积公式算出,如正方体的体积V=a3,圆柱体的体积V=πr2h,长方体的体积V=abc,根据求得密度。

    2. 形状不规则的固体(不溶于水):
    (1)体积可用“排水法”间接测出
    (2)质量可用天平测量
    ①先在量筒中倒入适量水,读出水的体积V1(水的多少以刚好淹没固体为宜。水过多,放入固体后液面会超过量程;水过少,不能淹没固体)
    ②将固体用细线拴住慢慢放人量筒内水中,并使其全部淹没,此时读出水与固体的总体积V2
    ③由V=V2-V1,得出固体体积。
    最后根据求得密度。

  • Ⅰ方法一:天平量筒法
    例:有一块形状不规则的石块,欲测量它的密度,所需哪些器材并写出实验步骤,并表示出测量的结果。
    分析:用天平和量筒测定密度大于水的物质的密度,可用排水法测体积。
    实验原理:
    实验器材:天平(砝码)、量筒、烧杯、滴管、线、水、石块
    实验步骤:
    (1)用调节好的天平,测出石块的质量m;
    (2)在量筒中倒入适量的水,测出水的体积V1
    (3)将石块用细线拴好,放在盛有水的量筒中,(排水法)测出总体积V2
     实验结论:ρ==
    Ⅱ方法二:助沉法
    例:有一块形状不规则的蜡块,欲测量它的密度,所需哪些器材并写出实验步骤,并表示出测量的结果。
    分析:用天平和量筒测定密度小于水的物质的密度,可用助沉法测体积。
    实验原理:
    实验器材:天平(砝码)、量筒、烧杯、滴管、线、水、蜡块、铁块。
    实验步骤:
    (1)用调节好的天平,测出蜡块的质量m;
    (2)在量筒中倒入适量的水,如图甲将蜡块和铁块用细线拴好,先将测铁块没入水中,测出水和石块的体积V1
    (3)再将蜡块浸没在水中,如图乙。(助沉法)测出水、石块、蜡块的体积总体积V2
    实验结论:
    注意:物质的密度比水小,放在量筒的水中漂浮,不能直接用量筒测出体积。例题中采用的方法是助沉法中的沉锤法,还可以用针压法,即用一根很细的针,将物体压入量筒的水中,忽略细针在水中占据的体积,则可用排水法直接测出物体的体积了。
    Ⅲ方法三:等浮力法
    例:小明家买的某品牌的牛奶喝着感觉比较稀,因此他想试着用学过的知识测量一个这种牛奶的密度。他先上网查询了牛奶的密度应该为1.03g/cm3,然后他找来一根粗细均匀的细木棒,在木棒的表面均匀地涂上一层蜡,并在木棒的一端绕上一段金属丝(体积不计),做成了一枝“密度计”,小明又找来一个足够深的盛水容器和一把刻度尺,请你帮助小明利用这些器材设计一个测量牛奶密度的方案。要求写出主要的测量步骤并推导出计算牛奶密度的公式(有足量的水和牛奶)。
    实验原理:漂浮条件、阿基米德原理。
    实验器材:刻度尺、粗细均匀的细木棒、一段金属丝、烧杯、水、牛奶。
    实验步骤:
    (1)将一段金属丝绕在木棒的一端,制成“密度计”,用刻度尺测出其长度L;
    (2)将“密度计”放入盛有水的烧杯中,使其漂浮在水中,用刻度尺测出“密度计”露出水面的高度h
    (3)将“密度计”放入盛有牛奶的烧杯中,使其漂浮在牛奶中,用刻度尺测出“密度计”露出牛奶液面的高度h
    实验结论:因为“密度计”在水中和在牛奶中,均处于漂浮状态。因此“密度计”在水中和在牛奶中受到的浮力都等于“密度计”的重力。“密度计”的重力不变,所以两次浮力相等。即F=F,根据阿基米德原理可得:
    ρgV牛排=ρgV水排
    ρgSh牛排=ρgSh水排
    ∵h牛排=L-hh水排=L-h
    ∴ρ(L-h)=ρ(L-h
    牛奶的密度:
    注意:从给定的器材看,即无量筒,也无天平,此时解题的着眼点就不能局限于利用质量、体积测密度。应该展开丰富的联想,而给出“密度计”,是和浮力有关的,就要联想到利用浮力测液体的密度。这种利用两次浮力相等来测密度,我们简称为“等浮力法”。


    Ⅳ弹簧测力计法(也可称双提法)
    例:张小清同学捡到一块不知名的金属块,将它放到水中可以沉没,现在,小清同学想测出它的密度,但身边只有一支弹簧秤、一个烧杯及足量的水,请你帮她想一想,替她设计一个测量金属块密度的实验过程,写出实验步骤
    分析与解:
            这是一道典型的利用浮力知识测密度的试题。阿基米德原理的重要应用就是已知浮力求体积。它的基本思路就是用弹簧测力计测出浮力,利用水的密度已知,求得物体的体积,即可计算出物体的密度值。
    实验原理:阿基米德原理
    实验器材:一支弹簧秤、一个烧杯及足量的水、金属块、线。
    实验步骤:
    (1)用细线系住金属块,在烧杯中倒入适量的水;
    (2)用弹簧测力计测出金属块受到的重力G;
    (3)用弹簧测力计测出金属块浸没在水中受到的拉力F。
    实验结论:
    注意:利用弹簧测力计提着金属块测一次重力;再提着金属块测一次金属块在水中时弹簧测力计的拉力。因此简称为双提法。这一实验使用的仪器少,操作简单,是常用的测量物体密度的方法。

     

     

     

     

     

     

     

     

     

     

     

     



http://www.00-edu.com/html/202005/70976.html十二生肖
十二星座