题目
下列说法中不正确的是 |
[ ] |
A.原子结构与太阳系十分相似 B.利用超导体可以制成发热效率极高的发热丝 C.不透明物体的颜色是由它反射的色光决定 D.导线中电流的迅速变化会在空间激起电磁波 |
题型:单选题难度:中档来源:广西自治区中考真题
所属题型:单选题
试题难度系数:中档
答案
考点梳理
初中三年级物理试题“下列说法中不正确的是[]A.原子结构与太阳系十分相似B.利用超导体”旨在考查同学们对
原子及其结构、
光的色散,色光的混合,物体的颜色、
电流的磁效应、
导体,绝缘体、
……等知识点的掌握情况,关于物理的核心考点解析如下:
此练习题为精华试题,现在没时间做?添加到收藏夹,以后再看。
根据试题考点,只列出了部分最相关的知识点,更多知识点请访问初三物理。
- 原子及其结构
- 光的色散,色光的混合,物体的颜色
- 电流的磁效应
- 导体,绝缘体
考点名称:原子及其结构
原子定义:
原子是一种元素能保持其化学性质的最小单位。一个正原子包含有一个致密的原子核及若干围绕在原子核周围带负电的电子。而负原子的原子核带负电,周围的负电子带正电。正原子的原子核由带正电的质子和电中性的中子组成。负原子原子核中的反质子带负电,从而使负原子的原子核带负电。当质子数与电子数相同时,这个原子就是电中性的;否则,就是带有正电荷或者负电荷的离子。根据质子和中子数量的不同,原子的类型也不同:质子数决定了该原子属于哪一种元素,而中子数则确定了该原子是此元素的哪一个同位素。
原子的构成:
原子的中心是一个微小的由核子(质子和中子)组成的原子核,占据了整个原子的绝大部分质量。原子核中的质子和中子紧密地堆在一起,因此原子核的密度很大。质子和中子的质量大至相等,中子略高一些。质子带正电荷,中子不带电荷,是电中性的。所以整个原子核是带正电荷的。原子核即使和原子相比,还是非常细小的——比原子要小100,000倍。原子的大小主要是由最外电子层的大小所决定的。如有原子是一个足球场,那原子核就是场中央的一颗绿豆。所以原子几乎是空的,被电子占据着。
原子结构的三个关系:
(1)数量关系:质子数 = 核电荷数 = 核外电子数(原子中)
(2)电性关系:
①原子中:质子数=核电荷数=核外电子数
②阳离子中:质子数>核外电子数 或 质子数=核外电子数+电荷数
③阴离子中:质子数<核外电子数 或 质子数=核外电子数-电荷数
(3)质量关系:质量数 = 质子数 + 中子数
原子结构的公式:
质量数(A)=质子数(Z)+中子数(N),无论原子还是离子,该公式均适应。
原子可用 表示,质量数A写在原子的右上角,质子数Z写在原子的左下角,上下两数值的差值即为中子数。原子周围右上角以及右下角或上面均可出现标注,注意不同位置标注的含义,右上角为离子的电性和电荷数,写作n ;右下角为微粒中所含X原子的个数,上面标注的是化合价,写作 n形式,注意与电荷的标注进行正确区分,如由氧的一种同位素形成的过氧根离子,可写作 O(-1) 。
原子的性质:
电子是带负电荷的。它们远比质子和中子轻,质量只有质子的约1/1836。它们高速地围著原子核运转。电子围绕原子核的轨道并不都一样。
在一颗电中性的原子中,质子和电子的数目是一样的。另一方面,中子的数目不一定等于质子的数目。带电荷的原子叫离子。电子数目比质子小的原子带正电荷,叫阳离子。相反的原子带负电荷,叫阴离子。金属元素最外层电子一般小于四个,在反应中易失去电子,趋向达到稳定的结构,成为阳离子,非金属元素最外层电子一般多于四个,在化学反应中易得到电子,趋向达到稳定的结构,成为阴离子。
原子序决定了该原子是那个族或那类元素。例如,碳原子是那些有6颗质子的原子。所有相同原子序的原子在很多物理性质都是一样的,所显示的化学反应都一样。质子和中子数目的总和叫质量数。
只有94种原子是天然存在的每种原子都有一个名称,每个名称都有一个缩写。俄国化学家门捷列夫根据不同原子的化学性质将它们排列在一张表中,这就是元素周期表。为纪念门捷列夫,第101号元素被命名为钔。首11种原子(或元素)依次为氢、氦、锂、铍、硼、碳、氮、氧、氟、氖 和 钠。它们的简写是H、He、Li、Be、B、C、N、O、F、Ne、Na。
考点名称:光的色散,色光的混合,物体的颜色
光的色散
光的色散指的是复色光分解为单色光的现象;复色光通过棱镜分解成单色光的现象;光纤中由光源光谱成分中不同波长的不同群速度所引起的光脉冲展宽的现象。色散也是对光纤的一个传播参数与波长关系的描述。牛顿在1666年最先利用三棱镜观察到光的色散,把白光分解为彩色光带(光谱)。色散现象说明光在媒质中的速度(或折射率n=c/v)随光的频率而变。光的色散可以用三棱镜,衍射光栅,干涉仪等来实现。光的色散证明了光具有波动性。
1、色散:白光分解成多种色光的现象。
2、光的色散现象:一束太阳光通过三棱镜,被分解成七种色光的现象叫光的色散,这七种色光从上至下依次排列为红、橙、黄、绿、蓝、靛、紫(如图甲所示)。同理,被分解后的色光也可以混合在一起成为白光(如图乙所示)。
组成要素:
1、介质
光的色散需要有能折射光的介质,介质折射率随光波频率或真空中的波长而变。当复色光在介质界面上折射时,介质对不同波长的光有不同的折射率,各色光因折射角不同而彼此分离。1672年,牛顿利用三棱镜将太阳光分解成彩色光带,这是人们首次作的色散实验。通常用介质的折射率n或色散率dn/dλ与波长λ的关系来描述色散规律。任何介质的色散均可分正常色散和反常色散两种。
2、光波
光的色散当然还要有光波。光波都有一定的频率,光的颜色是由光波的频率决定的,在可见光区域,红光频率最小,紫光的频率最大,各种频率的光在真空中传播的速度都相同,约等于3.0×10^8m/s.但是不同频率的单色光,在介质中传播时由于受到介质的作用,传播速度都比在真空中的速度小,并且速度的大小互不相同.红光速度大,紫光的传播速度小,因此介质对红光的折射率小,对紫光的折率大.当不同色光以相同的入射角射到三棱镜上,红光发生的偏折最少,它在光谱中处在靠近顶角的一端.紫光的频率大,在介质中的折射率大,在光谱中也就排列在最靠近棱镜底边的一端。
光的三原色及色光的混合
1、色光的三原色:红、绿、蓝三种色光是光的三原色。
2、色光的混合:红、绿、蓝三种色光中,任何一种色光都不能由另外两种色光合成。但红、绿、蓝三种色光却能够合成出自然界绝大多数色光来,只要适当调配它们之间的比例即可。色光的合成在科学技术中普遍应用,彩色电视机就是一例。它的荧光屏上出现的彩色画面,是由红、绿、蓝三原色色点组成的。显像管内电子枪射出的三个电子束,它们分别射到屏上显不出红、绿、蓝色的荧光点上,通过分别控制三个电子束的强度,可以改变三色荧光点的亮度。由于这些色点很小又靠得很近,人眼无法分辨开来,看到的是三个色点的复合.即合成的颜色。
如图所示,适当的红光和绿光能合成黄光;适当的绿光和蓝光能合成青光;适当的蓝光和红光能合成品红色的光;而适当的红、绿、蓝三色光能合成白光。因此红、绿、蓝三种色光被称为色光的“三原色。”
物体的颜色:
在光照到物体上时,一部分光被物体反射,一部分光被物体吸收,不同物体,对不同颜色的光反射、吸收和透过的情况不同,因此呈现不同的色彩。
光的色散现象得出的两个结论:
第一、白光不是单色的,而是由各种单色光组成的复色光;
第二、不同的单色光通过棱镜时偏折的程度是不同的,红光的偏折程度最小,紫光的偏折程度最大。
色光的混合:
不能简单地认为色光的混合是光的色散的逆过程。例如:红光和绿光能混合成黄光,但黄光仍为单色光,它通过三棱镜时并不能分散成红光和绿光。
物体的颜色:
由它所反射或透射的光的颜色所决定。
1.透明物体的颜色由通过它的色光决定在光的色散实验中,如果在白屏前放置一块红色玻璃,则白屏上的其他颜色的光消失,只能留下红色,说明其他色光都被红玻璃吸收了,只能让红光通过,如图所示。如果放置一块蓝玻璃,则白屏上呈现蓝色。
2.不透明物体的颜色由它反射的色光决定在光的色散实验中,如果把一张红纸贴在白屏上,则在红纸上看不到彩色光带,只有被红光照射的地方是亮的,其他地方是暗的;如果把绿纸贴在白屏上,则只有绿光照射的地方是亮的,其他地方是暗的,如图所示。
规律总结:如果物体是不透明的,黑色的物体会吸收所有色光,白色物体会反射所有色光,其他颜色的物体只反射与它颜色相同的光。如红光照蓝裙子,蓝裙子只反射蓝光,红光被吸收,没有光进入我们的眼睛,感觉它呈黑色。 实验法研究透明物体和不透明物体的颜色:
1.透明物体的颜色是由它透过的色光决定的。
2.不透明物体的颜色南它反射的色光决定。
3.如果在屏上贴一张黑纸,不论由什么颜色的光照射,其均为黑,这表明黑色物体吸收各种颜色的光;如果在屏上贴一张白纸,在白纸上能看到各种色光,表明白色物体反射各种色光,即红光照射到白纸上呈红色,黄光照射到白纸上呈黄色等。 颜料的三原色、颜料的混合:
1.颜料的三原色:颜料的三原色是红、黄、蓝,这三种颜料按一定比例混合,能调出各种不同的颜色。
2.颜料的混合:颜料与色光不同,颜料本身不发光,我们看到颜料的色彩是颜料所反射的色光,同时吸收了其他的光。颜料不同,所反射的光不同。两种颜料混合后会反射第三种色光,而不是原来两种颜料反射光的混合。所以,颜料的混合原理是:两种颜料混合色是它们都能反射的色光,其余的色光都被这两种颜料吸收掉了。在印刷行业,就是用红、黄、蓝三种颜料来调出各种色彩,在绘画技术上也是应用红、黄、蓝来调色的。如图所示。口注意各种颜料主要反射与它颜色相同的色光,同时也反射光谱中跟它相邻的色光。
3.颜料的三原色和色光的三原色不同
(1)色光的三原色:红、绿、蓝。颜料的三原色:红、黄、蓝。
(2)混合规律也不同。色光的三原色混合后为白色,颜料的三原色混合后为黑色。
(3)它们的混合原理不同。颜料的混合原理是:两种颜料混合色是它们都能反射的色光,其余的色光都被这两种颜料吸收掉了。色光的混合原理是:两种色光混合后使眼睛感觉到产生了另一种颜色。
冷色与暖色:
不同的色彩搭配,不仅给人美感,而且使人产生联想。如黄、橙、红属于暖鱼,让人想到火与太阳;绿、蓝、紫属于!丝,使人想到草地、水等。
单色光与复色光:
1.单色光:一般把红、橙、黄、绿、蓝、靛、紫等颜色的光称为单色光。
2.复色光:由单色光混合成的光称为复色光。
大海为什么是蓝色的:
太阳光是由红、橙、黄、绿、蓝、靛、紫七种色光组成,当太阳光照射到大海上时,蓝光、紫光大部分被散射,且蓝光部分多,所以大海看上去是碧蓝的。
考点名称:电流的磁效应
定义:
电流的磁效应(通电会产生磁):奥斯特发现,任何通有电流的导线,都可以在其周围产生磁场的现象,称为电流的磁效应。
非磁性金属通以电流,却可产生磁场,其效果与磁铁建立的磁场相同。
通有电流的长直导线周围产生的磁场:
在通电流的长直导线周围,会有磁场产生,其磁感线的形状为以导线为圆心一封闭的同心圆,且磁场的方向与电流的方向互相垂直。
右手定则1
用右手握住导线,大拇指指向电流的方向(所以必须是直流电,电流的方向,在导线中是由正极流到负极),其余四指所指的方向,即为磁力线的方向或磁针N极所受磁力的方向。
右手定则2
以右手握住线圈,四指指向导线上电流的方向,则大拇指所指即为磁力线方向。
磁场的强度1
H(高斯)=2I(安培)/10r(公分)<;==长直导线
I:系指导线上的总电流,可借着增加线圈的匝数来提高导线上的总电流。
r:为与导线间的垂直距离。
*注:地球磁场约0.2高斯。
磁场强度2
螺管线圈:管面半径a,管长L,线圈总匝数N,距端面为X的P点
a.空心:X点之磁场
b.若在螺线管内塞满磁铁性物质,除了原有空心线圈所产生的磁场外,另外还得加上这些物质磁化后所造的磁场,即总磁场强度(B)应为
B=H+4πM=H+4πXH=(1+4πX)H=μH
X:导磁M:磁化强度H:空心线圈之磁场
由上式可知塞有磁性物质的螺线管,其所产生的磁场强度为空心线圈的M倍。一般铁磁性物质的μ值在数百到数万之间。
通电导体周围存在磁场,电流的磁场的方向和电流方向有关。
直线电流的磁场分布:
直线电流的磁场中的磁感线分布垂直于电流的所有平面上,是以电流为中心的一系列同心圆。
直线电流的方向跟它的磁感线方向之间的关系可以用右手螺旋定则(安培定则)来判断:
右手握住导线,让伸直的大拇指所指的方向和电流方向一致,那么弯曲四指所指的方向就是磁感线的环绕方向。
考点名称:导体,绝缘体
导体与绝缘体的概念
导体:容易导电的物体叫做导体,例如:石墨、人体、大地以及酸、碱、盐的水溶液;
绝缘体:不容易导电的物体叫做绝缘体,例如:橡胶、玻璃、塑料等;
两者关系:导体和绝缘体在一定条件下可以相互转化。
导体容易导电,绝缘体不容易导电的原因:
(1)导体容易导电是冈为导体中有大量的自由电荷,它们受原子核的束缚力很小,能够从导体的一个部分移到另一个部分;
(2)绝缘体中,电荷几乎都束缚在原子的范围之内,不能从绝缘体的一个部分移到另一个部分。
导体的分类
1、半导体:
半导体材料的导电能力介于导体和非导体之间,比导体差、比非导体强,具有一些特殊的物理性质,温度、光照、杂质等因素都对它的性能有很大影响。常见的半导体材料有硅、锗和砷化镓等。用半导体材料可以制造半导体二极管、二三极管和集成电路等多种半导体元件。
半导体的特点:
(1)半导体二极管具有单向导电性,即只允许电流由一个方向通过元件。
(2)半导体三极管可以用来放大电信号。
2、超导体:
(1)超导现象:某些物质在很低的温度下,电阻就变成了零,这就是超导现象。
(2)应用:
(1)利用超导体的零电阻特性可实现远距离大功率输电。超导输电线可以无损耗地输送较大的电流,这意味着用细电线就可以输送大电流。
(2)超导磁悬浮现象,使人们可以用超导体来实现交通工具的“无摩擦”运行。
导体和绝缘体的比较: