零零教育信息网 首页 > 考试 > 数学 > 小学数学 > 抽屉原理 > 正文 返回 打印

从1,2,3,4,…,15,16这十六个自然数中,任取出n个数,其中必有这样的两个数:一个是另一个的3倍,则n最小是______.-数学

[db:作者]  2019-08-16 00:00:00  互联网

题文

从1,2,3,4,…,15,16这十六个自然数中,任取出n个数,其中必有这样的两个数:一个是另一个的3倍,则n最小是______.
题型:填空题  难度:偏易

答案

将有3倍关系的放入一组为:(1,3,9)、(2,6)、(4,12)、(5,15)共有4组,
其余7个数每一个数为一组,
即将这16个数可分为11组,.则第一组最多取2个即1和9,其余组最多取一个,
即最多能取12个数保证没有一个数是另一个的三倍,
此时只要再任取一个,即取12+1=13个数必有一个数是另一个数的3倍.
所以n最小是13.

据专家权威分析,试题“从1,2,3,4,…,15,16这十六个自然数中,任取出n个数,其中必..”主要考查你对  抽屉原理  等考点的理解。关于这些考点的“档案”如下:

抽屉原理

考点名称:抽屉原理

  • 抽屉原理:
    又称鸽巢原理,它是组合数学的一个基本原理,最先是由德国数学家狭利克雷明确地提出来的,因此,也称为狭利克雷原理。
    在这类问题中,只需要确定某个物体(或某个人)的存在就可以了,并不需要指出是哪个物体(或哪个人),也不需要说明是通过什么方式把这个存在的物体(或人)找出来。这类问题依据的理论,我们称之为“抽屉原理”。

  • 两种抽屉原理:
    第一抽屉原理:
    原理1: 把多于n个的物体放到n个抽屉里,则至少有一个抽屉里的东西不少于两件。
    原理2 :把多于mn(m乘以n)个的物体放到n个抽屉里,则至少有一个抽屉里有不少于m+1的物体。
    原理3 :把无穷多件物体放入n个抽屉,则至少有一个抽屉里 有无穷个物体。
    原理1 、2 、3都是第一抽屉原理的表述。
    第二抽屉原理:
    把(mn-1)个物体放入n个抽屉中,其中必有一个抽屉中至多有(m—1)个物体(例如,将3×5-1=14个物体放入5个抽屉中,则必定有一个抽屉中的物体数少于等于3-1=2)。

    抽屉原理形式:
    形式一:把m个物体任意分放进n个空抽屉里(m>n,n是非0自然数),那么一定有一个抽屉中放进了至少2个物体。
    形式二:把多于kn个物体任意分放进n个空抽屉里(k是正整数),那么一定有一个抽屉中放进了至少(k+1)个物体。



http://www.00-edu.com/ks/shuxue/1/choutiyuanli/2019-08-20/1310358.html十二生肖
十二星座