零零教育信息网 首页 > 考试 > 物理 > 初中物理 > 电功或电能的计算 > 正文 返回 打印

电水壶能在较短的时间内提供沸水,正好与现代入的生活节奏合拍,

互联网  2008-10-10 00:00:00  互联网

题目

电水壶能在较短的时间内提供沸水,正好与现代入的生活节奏合拍,是现代家庭中必备的电器.小明家刚从超市买回了一只电水壶(如图甲所示),图乙为该电水壶的铭牌.

零零教育信息网

(1)小明观察发现该电水壶所用的插头是三线插头(如图丙所示),当将该三脚插头与电水壶相连时,其中标着E的导线和电水壶的______相连,而三孔插座上相应的插孔和______相连.
(2)小明实验发现:该电水壶装满初温为25℃水后正常工作通电10min,可使壶内水的温度升高到85℃.那么,在这一过程中,水吸收的热量是多少?电水壶消耗的电能是多少?[c=4.2×103J/(kg-℃),1L=10-3 m3]
(3)该电水壶烧水时的效率是多少?

所属题型:问答题 试题难度系数:中档

答案


(1)电水壶要使用三孔插座和三脚插头,其中标着E的导线和电水壶的外壳相连,而三孔插座上相应的插孔和 大地相连;
(2)水的体积:
V=2L=0.002m3
水的质量:
m=1000kg/m3×0.002m3=2kg,
水吸收的热量:
Q=cm△t=4.2×103J/(kg?℃)×2kg×(85℃-25℃)=5.04×105J;
消耗的电能:
W=Pt=1000W×10×60s=6×105J,
电水壶的热效率:
η=
Q
W
=
5.04×105J
6×105J
=84%.  
故答案为:(1)外壳,大地;
(2)水吸收的热量是5.04×105J;电水壶消耗的电能是6×105J;
(3)该电水壶烧水时的效率是84%.

考点梳理

初中三年级物理试题“电水壶能在较短的时间内提供沸水,正好与现代入的生活节奏合拍,”旨在考查同学们对 热量的计算 热平衡方程的应用 电功或电能的计算 密度公式的应用 ……等知识点的掌握情况,关于物理的核心考点解析如下:

此练习题为精华试题,现在没时间做?添加到收藏夹,以后再看。

根据试题考点,只列出了部分最相关的知识点,更多知识点请访问初三物理。

  • 热量的计算
  • 热平衡方程的应用
  • 电功或电能的计算
  • 密度公式的应用

考点名称:热量的计算

热量的概念:

热量是指由于温度差别而转移的能量;也是指1公克的水在1大气压下温度上升1度c所产生的能量 ; 在温度不同的物体之间,热量总是由高温物体向低温物体传递;即使在等温过程中,物体之间的温度也不断出现微小差别,通过热量传递不断达到新的平衡。由于温差的存在而导致的能量转化过程中所转化的能量;而该转化过程称为热交换或热传递;热量的公制为焦耳。

热量的计算公式:

①经某一过程温度变化为△t,它吸收(或放出)的热量。Q表示热量(J),

Q=c·m·Δt.

Q吸=c·m·(t-t0)

Q放=c·m·(t0-t)

(t0是初温;t是末温)

其中C是与这个过程相关的比热(容).

热量的单位与功、能量的单位相同。在国际单位制中热量的单位为焦耳(简称焦,缩写为J)(为纪念科学家焦耳而立)。历史上曾定义热量单位为卡路里(简称卡,缩写为cal),只作为能量的辅助单位,1卡=4.184焦。

注意:1千卡=1000卡=1000卡路里=4184焦耳=4.184千焦

某一区域在某一时段内吸收的热量与释放、储存的热量所维持的均衡关系。

△T=(t1-t0)

②固体燃料完全燃烧释放的热量的计算公式:Q放=mq 气体燃料完全燃烧释放的热量的计算公式:Q=Vq Q表示热量(J),q表示热值( J/kg ),m表示固体燃料的质量(kg),V表示气体燃料的体积(m^3)。

q=Q放/m(固体);q=Q放/v(气体)

W=Q放=qm=Q放/m W=Q放=qV=Q放/v (W:总功)(热值与压强有关)

热量的单位:

Q———某种燃料完全燃烧后放出的热量———焦耳 J

m———表示某种燃料的质量———千克 kg

q———表示某种燃料的热值———焦耳每千克 J/kg

考点名称:热平衡方程的应用

热平衡方程:

1、热平衡方程又称热交换定律,指在热传递过程中,如果没有热量损失,则高温物体放出的热量Q放等于低温物体吸收的热量Q吸,即Q放=Q吸,把这个关系叫热平衡方程。

2、此方程只适用于绝热系统内的热交换过程,即无热量的损失;在交换过程中无热和功转变问题;而且在初、末状态都必须达到平衡态。系统放热,一般是由于温度降低、凝固、液化及燃料燃烧等过程。而吸热则是由于温度升高,熔解及汽化过程而引起的。

3、温度不同的两个或几个系统之间发生热量的传递,直到系统的温度相等。在热量交换过程中,遵从能的转化和守恒定律。从高温物体向低温物体传递的热量,实际上就是内能的转移,高温物体内能的减少量就等于低温物体内能的增加量。

验证热平衡方程的方法

1、用量筒量出50克冷水倒入烧杯内;量出100克热水倒入量热器内。分别测出热水和冷水的温度。

2、小心地将冷水倒入盛热水的量热器中,用搅拌器搅拌水,促使水的温度很快变得相同。用温度计测出混合后的水温。

3、计算出热水降低到混合水温时放出的热量,以及冷水升高到混合水温时吸收的热量。

4、改变初始水温及冷水、热水的质量再做2次实验。

将测量及计算结果填入表中:

验证热平衡方程

5、对热水放出的热量与冷水吸收的热量进行比较,看看二者是否相等。如果二者不相等,试分析产生误差的原因。

【注意事项】

1、混合后要用搅拌器充分搅拌,但搅拌时间不宜太长,停止搅拌时要立即读出混合后的水温。

2、注意正确使用量筒、量热器和温度计,结合实验者的操作情况分析误差产生的原因,从而正确理解热平衡方程。

热平衡方程的应用

例:家庭使用的液化石油气储存在钢罐里,钢罐顶部有一个阀门开关,罐内气压大于大气压.石油气泄漏时易发生中毒、爆炸和火灾事故,已知石油气热值为3.5×107J/kg,烧水时,设石油气燃烧放出的热量只有50%被水吸收,问:

(1)将质量为2.5kg,初温为20℃的水加热到100℃,需吸收多少热量?需完全燃烧石油气多少千克?(C水=4.2×103J•kg-1•℃-1)

(2)当发现家中钢罐内的液化石油气泄漏时,为防止事故的发生你应采取哪些措施?

分析:(1)知道水的质量、比热容和温度的变化,根据Q吸=cm(t-t0)求出水吸收的热量;由题意可知Q放=Q吸,根据Q放=mq求出需完全燃烧石油气的质量;

(2)由于液化石油气是易燃气体,故不能有明火出现.

解答:(1)水吸收的热量:

Q=cm(t-t0
=4.2×103J/(kg•℃)×2.5kg×(100℃-20℃)
=8.4×105J;
由题意可知,Q=Q=8.4×105J,
由Q=mq可得,需完全燃烧石油气的质量m′=Q放/q=2.4kg,即

 
8.4×105J
3.5×107J/kg

(2)严禁有明火出现、关闭阀门、开窗通气.

答:(1)水吸收8.4×105的热量,需完全燃烧石油气2.4kg;

(2)严禁有明火出现、关闭阀门、开窗通气.

点评:本题考查了学生对公式Q吸=cm△t和Q=mq的理解与掌握,要注意当液化石油气泄漏时,应当关闭阀门、开窗通气,一定不要出现明火,否则会发生爆炸.

考点名称:电功或电能的计算

电能是表示电流做多少功的物理量,电能指电以各种形式做功的能力(所以有时也叫电功 ),分为直流电能、交流电能,这两种电能均可相互转换。

电功计算基本公式及推导公式(适用于纯电阻电路):W=UIt,W=I2Rt,W=U2t/R,W=Pt,W=Uq。

电能单位是“度”,它的学名叫做千瓦时,符号是kW·h。在物理学中,更常用的能量单位(也就是主单位,有时也叫国际单位)是焦耳,简称焦,符号是J。它们的关系是:1kW·h=3.6×106J,电能公式:W=UIt=Pt 根据欧姆定律(I=U/R)可以进一步推出:W=I2Rt=U2t/R

电功计算:

1. W=UQ电

电能也是一种能量,而这种能量的实施者就是电荷,电荷量就是这种能量在一般的时间内所有参与作功从A点到B点的实行者,每个电荷从A点到B点做的功就是电压,两者相乘就是AB的电功,就是消耗的电能

2. W=UIt

我们来看一下电功的含义,电功通俗的讲就是AB之间的一段时间A点到B点所消耗的电能(A点到B点可以是一个用电器,也可以是一部分电路)电压的实质是一个单位的电荷从A点到B点所做的功,电流提供的是在一个单位时间内AB之间的电荷量,时间也有了,那么AB之间的电荷量在一定时间内从A点到B点所做的功也就是消耗的电能就是W=UIt

3. W=Pt

W电功、P电功率、t时间

像功的计算方法一样就是功率乘以时间,在生活中可以理解为工作总量=工作效率×工作时间,同样道理电所做的功当就等于电做功的效率乘以时间。

W=I2Rt (纯电阻电路)

考点名称:密度公式的应用

密度换算公式:
密度的公式:ρ=m/V(ρ表示密度、m表示质量、V表示体积)
密度公式变化:m=ρV、V=m/ρ

正确理解密度公式:
理解密度公式时,要注意条件和每个物理量所表示的特殊含义。从数学的角度看有三种情况(判断正误):
(1)ρ一定时,m和V成正比;(因为ρ=m/V,ρ一定,m增大,V也增大,所以成正比)
(2)m一定时,ρ与V成反比;(因为m=ρv,m一定,v增大,ρ变小,所以成反比)
(3)V一定时,ρ与m成正比。
结合物理意义,三种情况只有(1)的说法正确,(2)(3)都是错误的。
因为同种物质的密度是一定的,它不随体积和质量的变化而变化,所以在理解物理公式时,不可能脱离物理事实,不能单纯地从数学的角度理解物理公式中各量的关系。

常用气体密度换算:
1.干空气密度
密度是指单位体积空气所具有的质量, 国际单位为千克/米3(kg/m3 ),一般用符号ρ表示。其定义式为: ρ = M/V (1--1)
式中 M——空气的质量,kg;
  V——空气的体积,m3。
空气密度随空气压力、温度及湿度而变化。上式只是定义式,通风工程中通常由气态方程求得干、湿空气密度的计算式。由气态方程有:
 ρ=ρ0*T0*P/P0*T (1--2)
式中 :ρ——其它状态下干空气的密度,kg/m3;
 ρ0——标准状态下干空气的密度,kg/m3;
 P、P0——分别为其它状态及标准状态下空气的压力,千帕(kpa);
 T、T0——分别为其它状态及标准状态下空气的热力学温度,K。
标准状态下,T0=273K,P0=101.3kPa时,组成成分正常的干空气的密度ρ0=1.293kg/m3。将这些数值代入式(1-2),即可得干空气密度计算式为:
 ρ = 3.48*P/T(1--3)
使用上式计算干空气密度时,要注意压力、温度的取值。式中P为空气的绝对压力,单位为kPa;T为空气的热力学温度(K),T=273+t, t为空气的摄氏温度(℃)。
2.湿空气密度
对于湿空气,相当于压力为P的干空气被一部分压力为Ps的水蒸汽所占据,被占据后的湿空气就由压力为Pd的干空气和压力为Ps的水蒸汽组成。根据道尔顿分压定律,湿空气压力等于干空气分压Pd与水蒸汽分压Ps之和,即:P=Pd+Ps。
根据相对湿度计算式,水蒸汽分压Ps=ψPb,根据气态方程及道尔顿的分压定律,即可推导出湿空气密度计算式为:
ρw=3.48*P(1-0.378*ψ*Pb/P)/T (2--1)
式中 ρw ——湿空气密度,kg/m3;
ψ——空气相对湿度,%;
Pb——饱和水蒸汽压力,kPa(由表2-1-1确定)。
其它符号意义同上。 

密度公式的应用:
1. 有关密度的图像问题
此问题一般是给出质量一体积图像,判断或比较物质密度。解答时可在横坐标(或纵坐标)任选一数值,然后在纵坐标(或横坐标)上找到对应的数值,进行分析比较。
 例1如图所示,是甲、乙两种物质的m一V图像,由图像可知(   )
A.ρ
B.ρ
C.ρ
D.无法确定甲、乙密度的大小

解析:要从图像直接看出甲、乙两种物质的密度大小目前还做不到,我们要先借助图像,根据公式ρ =总结规律后方可。
如图所示,在横轴上任取一点V0,由V0作横轴的垂线V0B,分别交甲、乙两图线于A、B两点,再分别从A、B两点作纵轴垂线,分别交纵轴于m、m两点。则甲、乙两种物质的密度分别为,ρ= ,因为m<m,所以ρ甲<ρ乙,故C正确。

2. 密度公式ρ =及变形、m=ρV的应用:
密度的公式是ρ =,可得出质量计算式m=ρV 和体积计算式。只要知道其中两个物理量,就可以代入相应的计算式进行计算。审题时注意什么量是不变的,什么量是变化的。
例2某瓶氧气的密度是5kg/m3,给人供氧用去了氧气质量的一半,则瓶内剩余氧气的密度是_____;容积是10L的瓶子装满了煤油,已知煤油的密度是 0.8×103kg/m3,则瓶内煤油的质量是_____,将煤油倒去4kg后,瓶内剩余煤油的密度是______。
 解析:氧气用去一半,剩余部分仍然充满整个氧气瓶,即质量减半体积不变,所以氧气的密度变为 2.5kg/m3。煤油倒去一半后,体积质量同时减半,密度不变。
答案:2.5kg/m3;8kg;0.8×10kg/m3

3. 比例法求解物质的密度
   利用数学的比例式来解决物理问题的方法称之为 “比例法”。能用比例法解答的物理问题具备的条件是:题目所描述的物理现象,由初始状态到终结状态的过程中至少有一个量保持不变,这个不变的量是由初始状态变成终结状态的桥梁,我们称之为“中介量”。
例3甲、乙丽个物体的质量之比为3:2,体积之比为l:3,那么它们的密度之比为(   )
A.1:2B.2:1C.2:9D.9:2
解析:(1)写出所求物理量的表达式:
(2)写出该物理量比的表达式:

(3)化简:代入已知比值的求解:


密度、质量、体积计算中的“隐含条件” 问题:
  很多物理问题中的有些条件需要仔细审题才能确定,这类条件称为隐含条件。因此寻找隐含条件是解决这类问题的关键。以密度知识为例,密度计算题形式多样,变化灵活,但其中有一些题具有这样的特点:即质量、体积、密度中的某个量在其他量发生变化时保持不变,抓住这一特点,就掌握了求解这类题的规律。

1.隐含体积不变
例1一个瓶子最多能装0.5kg的水,它最多能装_____kg的水银,最多能装_____m3的酒精。 ρ水银=13.6×103kg/m3,ρ水=1.0×103kg/m3,ρ酒精= 0.8×103kg/m3)
解析:最多能装即装满瓶子,由最多装水量可求得瓶子的容积为V=5×10-4m3,则装水银为m水银=13.6×103kg/m3×5×10-4m3=6.8kg。装酒精的体积为瓶子的容积。
答案6.8;5×10-4

2. 隐含密度不变
例2一块石碑的体积为V=30m3,为测石碑的质量,先取了一块刻制石碑时剔下来的小石块作为样品,其质量是m=140g,将它放入V1=100cm3的水中后水面升高,总体积增大到V2=150cm3,求这块石碑的质量m
解析:此题中隐含的条件是石碑和样品是同种物质,密度相同,而不同的是它们的体积和质量。依题意可知,样品体积为:
V=V2-V1=150cm3一100cm3=50cm3 =5.0×10-5m3
=84t
答案:84t

3. 隐含质量不变
例3质量为450g的水结成冰后,其体积变化了 ____m3。(ρ水=0.9×103kg/m3)
解析:水结成冰后,密度减小,450g水的体积为,水结成冰后,质量不变,因此冰的体积为=500cm3=5.0×10-4m3=5.0× 10-4m3一4.5×10-4m3=5×10-5m3

合金物体密度的相关计算:
     首先要抓住合金体的总质量与总体积分别等于各种物质的质量之和与体积之和这一特征,然后根据具体问题,灵活求解。
例两种不同的金属,密度分别为ρ1、ρ2:
(1)若墩质量相等的金属混合后制成合金,则合金的密度为____。
(2)若取体积相等的金属混合后制成合金,则合金的密度为_____。
解析:这道题的关键是抓住“两总”不变,即总质量和总体积不变。在(1)中,两种金属的质量相等,设为m1=m2=m,合金的质量m=2m,则密度为ρ1的金属的体积V1=,密度为ρ2的金属的体积V2=,合金的体积,则合金的密度
在(2)中两种金属的体积相等,设为,合金的体积,密度为ρ1的金属的质量m1=,密度为ρ2的金属的质量为,合金的质量m总,合金的密度为
答案:
注意:上述规律也适用于两种液体的混合,只要混合液的总质量和总体积不变即可。



http://www.00-edu.com/html/202110/117919.html十二生肖
十二星座