解:设大球的力臂为L大,小球的力臂为L小,大球的密度为ρ大,小球的密度为ρ小.
则两球在放入水中之前,根据杠杆的平衡条件可知:
G大L大=G小L小,
所以ρ大gV大L大=ρ小gV小L小,
则;
当两球都浸没在水中时,根据杠杆的平衡条件可知:
(G大-F浮大)L大=(G小-F浮小)L小,
由阿基米德原理原理可得:
(ρ大gV大-ρ水gV大)L大=(ρ小gV小-ρ水gV小)L小,
则
;
综合前面两式得出:
,
由此可得:
,
所以(ρ大-ρ水)ρ小=(ρ小-ρ水)ρ大,
则ρ大ρ小-ρ水ρ小=ρ小ρ大-ρ水ρ大,那么ρ水ρ小=ρ水ρ大,所以ρ小=ρ大
A、当两球都是实心时,两球的密度才是相等的.
B、若大球实心,小球空心,则ρ大>ρ小.
C、若大球空心,小球实心,则ρ大<ρ小.
D、若两球实心,则ρ大=ρ小,即。
现在两球都是空心,且空心部分体积相同,则两球减小的质量都相同,设减小的质量都是m0,而体积还是和原来相同,所以现在两个球的密度分别是,
,
由于,
所以,
即ρ大′>ρ小′.
故选 A. |