首页
>
考试
>
物理
>
高中物理
>
向心力
> 正文
返回
打印
半径为R的水平圆台,可绕通过圆心O的竖直光滑细轴CC′转动,如图所示,圆台上沿相互垂直的两个半径方向刻有凹槽,质量为mA的物体A放在一个槽内,物体A与槽底间的动摩擦因数为
网友投稿 2022-09-29 00:00:00 零零社区
◎ 题目
半径为R的水平圆台,可绕通过圆心O的竖直光滑细轴CC′转动,如图所示,圆台上沿相互垂直的两个半径方向刻有凹槽,质量为m
A
的物体A放在一个槽内,物体A与槽底间的动摩擦因数为μ,质量为m
B
的物体B放在另一个槽内,此槽是光滑的.AB间用一长为l(l<R)且不可伸长的轻绳绕过细轴相连.已知圆台做匀速转动,且A、B两物体相对圆台不动(A、B两物体可视为质点,物体的最大静摩擦力近似等于滑动摩擦力).
(1)当圆台转动的角速度为ω
0
,OA的长度为l
1
时,试写出A、B两个物体受到的向心力大小的表达式.
(2)不论圆台转动的角速度为多大,要使物体A和槽之间恰好没有摩擦力,则OA的长为多大?
(3)设OA长为x,试分析圆台的角速度ω和物体A到圆心的距离x所应满足的条件.
◎ 答案
(1)由向心力公式可得:
A向心力大小的表达式:F
A
=m
A
ω
0
2
l
1
B的向心力:F
B
=m
B
ω
0
2
(l-l
1
)
(2)设OA长为l
1
,则OB为l-l
1
;
F=m
A
ω
2
l
1
F=m
B
ω
2
(l-l
1
)
解得
l
1
=
m
B
m
A
+
m
B
l
.
(3)当A、B两物体相对转台静止且恰无摩擦时,物体A、B的动力学方程分别为
F=m
A
ω
2
x,F=m
B
ω
2
(l-x),联立解得
x=
m
B
m
A
+
m
B
l
当A、B两物体相对转台静止且A恰没有做远离轴心的运动时,物体A、B的动力学方程分别为
F+μm
A
g=m
A
ω
2
x,F=m
B
ω
2
(l-x)
ω=
μ
m
A
g
(
m
A
+
m
B
)x-
m
B
l
,
x>
m
B
m
A
+
m
B
l
当A、B两物体相对转台静止且A恰没有做向轴心的运动时,物体A、B的动力学方程分别为
F-μm
A
g=m
A
ω
2
x,F=m
B
ω
2
(l-x)
ω=
μ
m
A
g
m
B
l-(
m
A
+
m
B
)x
,
x<
m
B
m
A
+
m
B
l
综上分析可知
当l≥x>
m
B
m
A
+
m
B
l时,ω≤
μ
m
A
g
(
m
A
+
m
B
)x-
m
B
l
;
当x=
m
B
m
A
+
m
B
l时,ω可以任意取值;
当0≤x<
m
B
m
A
+
m
B
l时,ω≤
μ
m
A
g
m
B
l-(
m
A
+
m
B
)x
◎ 解析
“略”
◎ 知识点
专家分析,试题“半径为R的水平圆台,可绕通过圆心O的竖直光滑细轴CC′转动,如图所示,圆台上沿相互垂直的两个半径方向刻有凹槽,质量为mA的物体A放在一个槽内,物体A与槽底间的动摩擦因数为…”主要考查了你对 【向心力】,【滑动摩擦力、动摩擦因数】,【牛顿第二定律】 等知识点的理解和应用能力。关于这些知识点的“档案”,你可以点击相应的链接进行查看和学习。
http://www.00-edu.com/html/202209/260930.html
十二生肖
十二星座