首页
>
考试
>
物理
>
高中物理
>
牛顿第二定律
> 正文
返回
打印
某平面上有一半径为R的圆形区域,区域内、外均有垂直于该平面的匀强磁场,圆外磁场范围足够大,已知两部分磁场方向相反,方向如图所示,磁感应强度都为B,现在圆形区域的边界
网友投稿 2022-10-29 00:00:00 零零社区
◎ 题目
某平面上有一半径为R的圆形区域,区域内、外均有垂直于该平面的匀强磁场,圆外磁场范围足够大,已知两部分磁场方向相反,方向如图所示,磁感应强度都为B,现在圆形区域的边界上的A点有一个电量为q,质量为m的带正离子沿半径方向射入圆内磁场.求:
(1)若离子的速度大小为v
1
,求该离子在磁场中的轨道半径r;
(2)若离子与圆心O的连线旋转一周时,离子也恰好回到A点,试求该离子的运动速度v;
(3)在离子恰能回到A点的情况下,该离子回到A点所需的最短时间t.
◎ 答案
(1)由 Bqv=m
v
2
r
得r=
mv
qB
①
(2)如图,O
1
为粒子运动的第一段圆弧AB的圆心,O
2
为粒子运动的第二段圆弧BC的圆心,如右图所示,根据几何关系可知 tanθ=
r
R
②
∠AOB=∠BOC=2θ,如果粒子回到A点,则必有 n×2θ=2π,(n=3,4,5…)③
由①②③可得v=
qBR
m
tan
π
n
,(n=3,4,5…)
(3)粒子做圆周运动的周期T=
2πm
qB
因为粒子每次在圆形区域外运动的时间和圆形区域内运动的时间互补为一个周期T,所以粒子穿越圆形边界的次数越少,所需时间就越短,因此取n=3,
其轨迹如左图所示,代入到③可得θ=
π
3
而粒子在圆形区域内运动的圆弧的圆心角为α=
π
3
故所求的粒子回到A点的最短运动时间 t=T+
α
2π
T=
7πm
3qB
.
答:(1)若离子的速度大小为v
1
,该离子在磁场中的轨道半径r是
mv
qB
;
(2)若离子与圆心O的连线旋转一周时,离子也恰好回到A点,该离子的运动速度v是
qBR
m
tan
π
n
,(n=3,4,5…);
(3)在离子恰能回到A点的情况下,该离子回到A点所需的最短时间t是
7πm
3qB
.
◎ 解析
“略”
◎ 知识点
专家分析,试题“某平面上有一半径为R的圆形区域,区域内、外均有垂直于该平面的匀强磁场,圆外磁场范围足够大,已知两部分磁场方向相反,方向如图所示,磁感应强度都为B,现在圆形区域的边界…”主要考查了你对 【向心力】,【牛顿第二定律】,【带电粒子在匀强磁场中的运动】 等知识点的理解和应用能力。关于这些知识点的“档案”,你可以点击相应的链接进行查看和学习。
http://www.00-edu.com/html/202210/337799.html
十二生肖
十二星座