首页
>
考试
>
物理
>
高中物理
>
牛顿第二定律
> 正文
返回
打印
如图,ABCD为竖直平面内的光滑绝缘轨道,其中AB段是倾斜的,倾角为37°,BC段是水平的,CD段为半径R=0.15m的半圆,三段轨道均光滑连接,整个轨道处在竖直向下的匀强电场中,
网友投稿 2022-10-29 00:00:00 零零社区
◎ 题目
如图,ABCD为竖直平面内的光滑绝缘轨道,其中AB段是倾斜的,倾角为37°,BC段是水平的,CD段为半径R=0.15m的半圆,三段轨道均光滑连接,整个轨道处在竖直向下的匀强电场中,场强大小E=5.0×10
3
V/m.一带正电的导体小球甲,在A点从静止开始沿轨道运动,与静止在C点不带电的相同导体小球乙发生弹性碰撞,碰撞后速度交换(即碰后甲的速度变成碰前瞬间乙的速度,乙的速度变成碰前瞬间甲的速度).已知甲、乙两球的质量均为m=1.0×10
-2
㎏,小球甲所带电荷量为q
甲
=2.0×10
-5
C,g取10m/s
2
,假设甲、乙两球可视为质点,并不考虑它们之间的静电力,且整个运动过程与轨道间无电荷转移.
(1)若甲、乙两球碰撞后,小球乙恰能通过轨道的最高点D,试求小球乙在刚过C点时对轨道的压力;
(2)若水平轨道足够长,在甲、乙两球碰撞后,小球乙能通过轨道的最高点D,则小球甲应至少从距BC水平面多高的地方滑下?
(3)若倾斜轨道AB可在水平轨道上移动,在满足(1)问和能垂直打在倾斜轨道的条件下,试问小球乙在离开D点后经多长时间打在倾斜轨道AB上?
◎ 答案
因甲乙小球相同,则碰撞后两个小球的电量都为q=
1
2
q
甲
=1.0×10
-5
C
其电场力F=Eq=0.05N,G=mg=0.1N
(1)设小球乙恰能通过轨道的最高点D时的速率为v
D
,在D点:由牛顿第二定律得:
Eq+mg=
m
v
2D
R
解得:v
D
=0.15m/s
小球乙从C到D的过程,由动能定理:
-(mg+Eq)×2R=
1
2
m
v
2D
-
1
2
m
v
2C
在C点:由牛顿第二定律得:
N
C
-mg-Eq=m
v
2C
R
解得:N
C
=6(Eq+mg)=0.9N
由牛顿第三定律得:小球乙在刚过C点时对轨道的压力大小为N=0.9N,方向竖直向下.
(2)设小球甲从高度为h时滑下与小球乙碰撞后,小球乙恰能通过轨道的最高点D,
由动能定理:
(mg+E
q
甲
)×h=
1
2
m
v
2C
解得:h=
3
160
m
(3)小球乙离开D点做类平抛运动,加速度a=
Eq+mg
m
=15m/s
2
当小球乙垂直打在斜面上时,其竖直速度v
y
=at=v
c
tan53°=0.2m/s
故:时间t=
1
75
s
答:(1)小球乙在刚过C点时对轨道的压力是0.9N,方向竖直向下.
(2)小球甲应至少从距BC水平面
3
160
m
高处的地方滑下.
(3)小球乙在离开D点后经
1
75
s时间打在倾斜轨道AB上.
◎ 解析
“略”
◎ 知识点
专家分析,试题“如图,ABCD为竖直平面内的光滑绝缘轨道,其中AB段是倾斜的,倾角为37°,BC段是水平的,CD段为半径R=0.15m的半圆,三段轨道均光滑连接,整个轨道处在竖直向下的匀强电场中,…”主要考查了你对 【向心力】,【牛顿第二定律】,【动能定理】 等知识点的理解和应用能力。关于这些知识点的“档案”,你可以点击相应的链接进行查看和学习。
http://www.00-edu.com/html/202210/340926.html
十二生肖
十二星座