零零教育信息网 首页 > 考试 > 物理 > 高中物理 > 动量守恒定律的应用 > 正文 返回 打印

如图所示,在竖直面内有一个光滑弧形轨道,其末端水平,且与处于同一竖直面内光滑圆形轨道的最低端相切,并平滑连接。A、B两滑块(可视为质点)用轻细绳拴接在一起,在它们中间

网友投稿  2022-11-17 00:00:00  互联网

◎ 题目

如图所示,在竖直面内有一个光滑弧形轨道,其末端水平,且与处于同一竖直面内光滑圆形轨道的最低端相切,并平滑连接。AB两滑块(可视为质点)用轻细绳拴接在一起,在它们中间夹住一个被压缩的微小轻质弹簧。两滑块从弧形轨道上的某一高度由静止滑下,当两滑块刚滑入圆形轨道最低点时拴接两滑块的绳突然断开,弹簧迅速将两滑块弹开,其中前面的滑块A沿圆形轨道运动恰能通过轨道最高点。已知圆形轨道的半径R=0.50m,滑块A的质量mA=0.16kg,滑块B的质量mB=0.04kg,两滑块开始下滑时距圆形轨道底端的高度h=0.80m,重力加速度g取10m/s2,空气阻力可忽略不计。求:
(1)AB两滑块一起运动到圆形轨道最低点时速度的大小;
(2)滑块A被弹簧弹开时的速度大小;
(3)弹簧在将两滑块弹开的过程中释放的弹性势能。

◎ 答案

解:(1)设滑块A和B运动到圆形轨道最低点速度为v0,对滑块A和B下滑到圆形轨道最低点的过程,根据动能定理,有
(mA+mB)gh=(mA+mB)v02
解得:v0=4.0m/s
(2)设滑块A恰能通过圆形轨道最高点时的速度大小为v,根据牛顿第二定律有
mAg=mAv2/R
设滑块A在圆形轨道最低点被弹出时的速度为vA,对于滑块A从圆形轨道最低点运动到最高点的过程,根据机械能守恒定律,有
mAvA2=mAg2R+mAv2
代入数据联立解得:vA=5.0 m/s
(3)对于弹簧将两滑块弹开的过程,A、B两滑块所组成的系统水平方向动量守恒,设滑块B被弹出时的速度为vB,根据动量守恒定律,有
(mA+mB)v0=mAvA+mBvB
解得:vB=0
设弹簧将两滑块弹开的过程中释放的弹性势能为Ep,对于弹开两滑块的过程,根据机械能守恒定律,有 
(mA+mB)v02+Ep=mAvA2
解得:Ep=0.40J

◎ 解析

“略”

◎ 知识点

    专家分析,试题“如图所示,在竖直面内有一个光滑弧形轨道,其末端水平,且与处于同一竖直面内光滑圆形轨道的最低端相切,并平滑连接。A、B两滑块(可视为质点)用轻细绳拴接在一起,在它们中间…”主要考查了你对  【动能定理】,【机械能守恒定律】,【动量守恒定律的应用】  等知识点的理解和应用能力。关于这些知识点的“档案”,你可以点击相应的链接进行查看和学习。



http://www.00-edu.com/html/202211/379617.html十二生肖
十二星座