首页
>
考试
>
物理
>
高中物理
>
带电粒子在复合场中的运动
> 正文
返回
打印
如图甲所示,两块相同的平行金属板M、N正对着放置,相距为,板M、N上的小孔s1、s2与O三点共线,s2O=R,连线s1O垂直于板M、N。以O为圆心、R为半径的圆形区域内存在磁感应强度
网友投稿 2023-04-12 00:00:00 零零社区
◎ 题目
如图甲所示,两块相同的平行金属板M、N正对着放置,相距为
,板M、N上的小孔s
1
、s
2
与O三点共线,s
2
O=R,连线s
1
O垂直于板M、N。以O为圆心、R为半径的圆形区域内存在磁感应强度大小为B、方向垂直纸面向里的匀强磁场。收集屏PQ上各点到O点的距离都为2R,两端点P、Q关于连线s
1
O对称,屏PQ所对的圆心角θ=120°。质量为m、电荷量为e的质子连续不断地经s
1
进入M、N间的电场,接着通过s
2
进入磁场。质子重力及质子间的相互作用均不计,质子在s1处的速度看作零。
(1)若M、N间的电压U
MN
=+U时,求质子进入磁场时速度的大小。
(2)若M、N间接入如图乙所示的随时间t变化的电压
(式中
,周期T已知),且在质子通过板间电场区域的极短时间内板间电场视为恒定,则质子在哪些时刻自s
1
处进入板间,穿出磁场后均能打到收集屏PQ上?
(3)在上述(2)问的情形下,当M、N间的电压不同时,质子从s
1
处到打在收集屏PQ上经历的时间t会不同,求t的最大值。
◎ 答案
解:(1)根据动能定理,有
(2)质子在板间运动,根据动能定理,有
质子在磁场中运动,根据牛顿第二定律,有
若质子能打在收集屏上,轨道半径r与半径R应满足的关系:
解得板间电压
结合图象可知:质子在
…
(
,1,2,…)之间任一时刻从s
1
处进入电场,均能打到收集屏上
(3)M、N间的电压越小,质子穿出电场进入磁场时的速度越小,质子在极板间经历的时间越长,同时在磁场中运动轨迹的半径越小,在磁场中运动的时间也会越长,出磁场后打到收集屏前作匀速运动的时间也越长,所以当质子打在收集屏的P端时,对应时间t最长,两板间的电压此时为
在板间电场中运动时间
在磁场中运动时间
出磁场后打到收集屏前作匀速运动的时间
所以,运动总时间
或t
◎ 解析
“略”
◎ 知识点
专家分析,试题“如图甲所示,两块相同的平行金属板M、N正对着放置,相距为,板M、N上的小孔s1、s2与O三点共线,s2O=R,连线s1O垂直于板M、N。以O为圆心、R为半径的圆形区域内存在磁感应强度…”主要考查了你对 【带电粒子在复合场中的运动】 等知识点的理解和应用能力。关于这些知识点的“档案”,你可以点击相应的链接进行查看和学习。
http://www.00-edu.com/html/202304/442711.html
十二生肖
十二星座