在电磁感应现象中,若回中的感应电动势是由导体做切割磁感线运动而产生的,则通常用ε=BlVsinθ来求ε较方便,但有时回路中的电动势是由几根棒同时做切割磁感线运动产生的,如果先求出每根导体棒各自的电动势,再求回路的总电动势,有时就会涉及“反电动势”而超纲。如果取整个回路为研究对象,直接将法拉第电磁感应定律ε=
用于整个回路上,即可“一次性”求得回路的总电动势,避开超纲总而化纲外为纲内。
cd棒匀速向右运动时,所受摩擦力f方向水平向左,则安培力Fcd方向水平向右,由左手定则可得电流方向从c到d,且有:
Fcd =" IdB" =" f"
I =" f" /Bd ①
取整个回路abcd为研究对象,设回路的总电势为ε,由法拉第电磁感应定律ε=
,根据B不变,则△φ=B△S,在△t时间内,
△φ=B(V1-V2)△td
所以:ε=B(V1-V2)△td/△t=B(V1-V2)d ②
又根据闭合电路欧母定律有:I=ε/2r ③
由式①②③得:V1-V2 =" 2fr" / B2d2
代入数据解得:V1-V2 =6.25(m/s)