零零教育信息网 首页 > 图书 > 教材教辅 > 正文 返回 打印

微积分与数学模型-(上册)

  2020-09-26 00:00:00  

微积分与数学模型-(上册) 本书特色

  《微积分与数学模型》是由电子科技大学成都学院数学建模与工程教育研究项目组的教师,依据教育部颁发的“关于高等工业院校微积分课程的教学基本要求”,以培养应用型科技人才为目标而编写的。与《微积分与数学模型(上)》配套的系列教材还有《微积分与数学模型》(下册)、《线性代数与数学模型》、《概率统计与数学模型》。   《微积分与数学模型(上)》共5章,主要介绍函数、极限与连续、导数与微分、中值定理及其应用、不定积分、定积分等一元函数微积分学的基本内容,同时还介绍了极限模型、导数模型、优化与微分模型、定积分模型。每节后面配备有适当的习题,每章配备有复习题,*后附有参考解答与提示。《微积分与数学模型(上)》注重应用,在介绍微积分基本内容的基础上,融入很多模型及应用实例。   《微积分与数学模型(上)》可作为普通高校、独立学院及成人教育、自考等各类本科微积分课程的教材或相关研究人员的参考书。

微积分与数学模型-(上册) 目录

前言绪论第1章  函数、极限与连续  1.1  函数的基本概念    1.1.1  准备知识    1.1.2  函数定义    1.1.3  函数特性    习题1.1  1.2  初等函数    1.2.1  基本初等函数    1.2.2  初等函数  习题1.2  1.3  极限的概念    1.3.1  极限引例    1.3.2  极限的直观定义    1.3.3  极限的精确定义  习题1.3  1.4  极限的性质与运算    1.4.1  极限的性质    1.4.2  极限的运算  习题1.4  1.5  无穷小量    1.5.1  无穷小量与无穷大量    1.5.2  无穷小量的运算性质    1.5.3  无穷小量的比较  习题1.5  1.6  函数的连续性    1.6.1  连续函数的概念    1.6.2  间断点及其分类    1.6.3  连续函数的运算性质与初等函数的连续性    习题1.6  1.7  闭区间上连续函数的性质    1.7.1  *值定理    1.7.2  介值定理    习题1.7  1.8  极限模型应用举例    1.8.1  斐波那契数列与黄金分割    1.8.2  交流电路中的电流强度    习题1.8    复习题1第2章  导数与微分  2.1  导数的概念    2.1.1  导数的产生背景    2.1.2  导数的概念    2.1.3  单侧导数    2.1.4  导数的几何意义    2.1.5  函数可导与连续的关系    习题2.1  2.2  导数的运算法则    2.2.1  导数的四则运算法则    2.2.2  反函数的求导法则    2.2.3  复合函数的求导法则    2.2.4  基本初等函数的导数公式    习题2.2  2.3  隐函数的导数、由参数方程所确定的函数的导数    2.3.1  隐函数的导数    2.3.2  由参数方程所确定的函数的导数    2.3.3相关变化率    习题2.3  2.4  高阶导数    习题2.4  2.5  微分    2.5.1  微分的概念    2.5.2  微分的运算法则    2.5.3  函数的线性近似    习题2.5  2.6  导数与微分模型举例    2.6.1  实际问题中的导数模型    2.6.2  相关变化率    2.6.3  人口增长模型    2.6.4  经营决策模型    习题2.6    复习题2第3章  微分中值定理与导数的应用  3.1  微分中值定理    3.1.1  罗尔定理    3.1.2  拉格朗日定理    3.1.3  柯西定理    习题3.1  3.2  不定型的极限    3.2.1  o/o型    3.2.2  ∞/∞型    3.2.3  其他不定型  习题3.2  3.3  泰勒公式    3.3.1  函数逼近简介    3.3.2  具有佩亚诺型余项的n阶泰勒公式    3.3.3  具有拉格朗日型余项的n阶泰勒公式    3.3.4  将函数展开为泰勒公式    3.3.5  泰勒公式的应用    习题3.3  3.4  函数的单调性与极值    3.4.1  函数单调性的判定法    3.4.2  函数的极值    3.4.3  函数的*大值与*小值    习题3.4  3.5  函数的凸性与曲线的拐点    3.5.1  函数的凸性    3.5.2  曲线的拐点  习题3.5  3.6  函数图形的描绘    3.6.1  曲线的渐近线    3.6.2  函数图形的描绘    习题3.6  3.7  优化与微分模型举例    3.7.1  经营优化问题    3.7.2  运输问题    3.7.3  库存问题    3.7.4  森林救火问题    习题3.7    复习题3第4章  不定积分  4.1  不定积分的概念与性质    4.1.1  原函数与不定积分的概念    4.1.2  不定积分的几何意义    4.1.3  基本积分表    4.1.4  不定积分的性质    习题4.1  4.2  换元积分法    4.2.1  **类换元法(凑微分法)    4.2.2  第二类换元法    习题4.2  4.3  分部积分法    习题4.3  4.4  有理函数的积分    4.4.1  有理真分式分解为简单分式之和    4.4.2  有理函数的积分    4.4.3  三角函数有理式积分    习题4.4  4.5  不定积分的模型举例    4.5.1  在几何中的应用    4.5.2  在物理中的应用    4.5.3  在经济学中的应用    4.5.4  植物生长初步模型  复习题4第5章  定积分及其应用  5.1  定积分的概念与性质    5.1.1  引例    5.1.2  定积分的定义    5.1.3  可积的充分条件    5.1.4  定积分的几何意义    5.1.5  定积分的性质    习题5.1  5.2  微积分基本公式    5.2.1  变速直线运动的位置函数与速度函数之间的联系    5.2.2  积分上限函数及其导数    5.2.3  牛顿一莱布尼茨公式    习题5.2  5.3  定积分的换元法与分部积分法    5.3.1  定积分的换元法    5.3.2  定积分的分部积分法    习题5.3  5.4  广义积分    5.4.1  无穷限的广义积分    5.4.2  无界函数的广义积分    习题5.4  5.5  定积分的几何应用    5.5.1  微元法    5.5.2  定积分在几何上的应用    习题5.5  5.6  定积分模型应用举例    5.6.1  功    5.6.2  引力    5.6.3  质量    5.6.4  数值逼近    5.6.5  扫雪机清扫积雪模型    习题5.6    复习题5部分习题参考答案参考文献附录ⅰ  初等数学常用公式附录ⅱ  常用平面曲线及其方程
微积分与数学模型-(上册)

http://www.00-edu.com/tushu/jcjf/2020-10-03/2805741.html十二生肖
十二星座