高等数学 本书特色
本书共分十二章,主要内容包括函数、极限、连续,导数与微分,导数的应用,不定积分,定积分,定积分的应用,向量代数与空间解析几何,多元函数微分学,二重积分,曲线积分与曲面积分,无穷级数、微分方程。书后附有习题答案与提示。本书特别注重培养学生用数学概念、思想、方法消化吸收各种典型的习题和证明题。
本书内容全面,由浅入深,循序渐进,语言叙述简练,例题选择精准,章节后习题的份量较大,每章后面配有总复习题,以保证对基本知识点的训练、掌握、延伸。为加强读者对内容知识点的掌握,每章后面还对本章的基本概念、基本定理、疑点解答、基本题型四个方面进行了小结。
本书可作为高职高专院校理工类高等数学通用教材,也可供工科类相关专业专升本辅导教材。
高等数学 内容简介
《高等数学》每章内容后面有小结、有总复习题。每节的内容有基本概念、基本方法、疑点解析、基本题型,*后有习题参考答案。
是一本为专科和升本两用的教材和指导书,在内容上比目前专科教科书有所加深和拓展,对专科不要求的内容均用*号给予标注,但对准备升本的同学来说是简捷、必要的参考材料。
高等数学 目录
**章函数、极限、连续1
**节集合与函数1
一、集合、区间、邻域1
二、函数的概念3
三、函数的性质5
四、初等函数的概念与应用7
五、函数的应用11
第二节极限14
一、数列的极限14
二、函数的极限15
三、极限的性质18
四、无穷小量与无穷大量18
第三节极限的运算20
一、极限的两个常用公式20
二、极限的运算法则21
第四节无穷小的性质及应用25
一、极限与无穷小之间的关系25
二、无穷小的运算性质25
三、无穷小的比较26
第五节函数的连续性27
一、连续函数的概念27
二、函数的间断点及其类型29
三、连续函数的基本性质30
四、闭区间上连续函数的性质31
本章小结33
复习题一34
第二章导数与微分37
**节导数的概念37
一、导数的定义37
二、左导数和右导数39
三、求导数的步骤39
四、导数的几何意义40
五、可导与连续的关系 41
六、导数的应用42
第二节导数的运算43
一、基本初等函数的导数公式43
二、导数的四则运算法则44
三、复合函数的求导法则45
四、高阶导数47
第三节隐函数及参数方程所确定的函数的导数50
一、隐函数求导法50
二、由参数方程所确定的函数的求导法52
第四节微分及其计算53
一、微分的概念53
二、微分的几何意义54
三、微分的公式与运算法则54
四、微分在近似计算中的应用56
本章小结58
复习题二60
第三章导数的应用63
**节 微分中值定理及其应用63
一、微分的中值定理63
二、洛必达法则65
第二节函数的单调性及其极值68
一、函数单调性的判定68
二、一元函数的极值及求法70
第三节*大值与*小值及其应用73
一、*大值和*小值的求法73
二、极值在经济中的应用75
第四节曲线的凹凸与拐点、函数图形的描绘77
一、曲线的凹凸与拐点 77
二、函数图形的描绘79
本章小结82
复习题三83
第四章不定积分85
**节不定积分的概念85
一、原函数与不定积分85
二、不定积分与导数或微分的关系87
三、基本积分公式87
四、不定积分的运算性质和计算89
五、不定积分的几何意义90
第二节换元积分法92
一、**类换元积分法(凑微分法)92
二、第二类换元积分法95
第三节分部积分法100
本章小结103
复习题四104
第五章定积分106
**节定积分的概念和性质106
一、定积分的概念106
二、定积分的几何意义109
三、定积分的性质110
第二节微积分的基本公式113
一、变上限积分113
二、牛顿莱布尼茨公式115
第三节定积分的换元法与分部积分法117
一、定积分的换元积分法117
二、定积分的分部积分法120
第四节广义积分123
一、无穷区间的广义积分123
二、无界函数的广义积分125
本章小结127
复习题五128
第六章定积分的应用131
**节定积分的微元法131
第二节定积分的几何应用132
一、平面图形的面积132
二、立体的体积136
三、平面曲线的弧长138
*第三节定积分在物理方面的应用140
一、引力140
二、变力做的功141
三、液体的压力142
四、平均值142
第四节定积分在经济中的应用144
本章小结145
复习题六146
第七章向量代数与空间解析几何148
**节空间直角坐标系和向量的基本知识148
一、空间直角坐标系148
二、空间两点间的距离公式149
三、向量的概念及其坐标表示法150
第二节向量的数量积与向量积155
一、向量的数量积155
二、向量的向量积156
第三节空间的平面方程159
一、平面的点法式方程159
二、平面的一般方程160
三、两平面的夹角161
第四节空间直线的方程162
一、空间直线的点向式方程和参数方程162
二、空间直线的一般方程164
三、空间两直线的夹角164
第五节二次曲面与空间曲线167
一、曲面方程的概念167
二、常见的二次曲面及其方程167
三、空间曲线的方程169
四、空间曲线在坐标面上的投影171
本章小结172
复习题七173
第八章多元函数微分学176
**节二元函数的概念、极限、连续176
一、二元函数的概念176
二、二元函数的极限179
三、二元函数的连续性180
第二节 偏导数181
一、偏导数的概念及其运算181
二、高阶偏导数184
第三节全微分及其应用186
一、全微分的概念186
二、全微分的应用187
第四节多元复合函数与隐函数的微分法189
一、多元复合函数的求导法则189
二、隐函数的求导公式192
第五节偏导数的应用195
一、偏导数的几何应用195
二、二元函数的极值197
三、二元函数的*值200
四、条件极值201
本章小结202
复习题八204
第九章 二重积分208
**节二重积分的概念与性质208
一、二重积分的概念208
二、 二重积分的性质210
第二节二重积分的计算方法211
一、直角坐标系中的累次积分法212
二、极坐标系中的累次积分法216
第三节二重积分的应用220
一、几何上的应用220
*二、物理上的应用221
本章小结224
复习题九224
*第十章曲线积分226
**节对弧长的曲线积分226
一、对弧长曲线积分的概念226
二、对弧长的曲线积分的计算法227
第二节对坐标的曲线积分228
一、对坐标的曲线积分的概念228
二、对坐标的曲线积分的计算法231
三、两类曲线积分间的联系233
第三节格林公式、平面上曲线积分与路径无关的条件234
一、格林(green)公式234
二、平面上曲线积分与路径无关的条件236
本章小结240
复习题十241
第十一章无穷级数243
**节数项级数的概念及其基本性质243
一、数项级数的概念243
二、数项级数的基本性质245
第二节数项级数的审敛法 247
一、正项级数及其审敛法247
二、交错级数及其审敛法251
三、任意项级数的敛散性252
第三节幂级数254
一、函数项级数的概念254
二、幂级数及其收敛性255
三、幂级数的运算257
第四节函数的幂级数展开259
一、泰勒级数和麦克劳林级数259
二、函数展开成幂级数的方法260
第五节幂级数在近似计算上的应用264
一、函数值的近似计算264
二、用幂级数表示函数265
本章小结265
复习题十一267
第十二章微分方程270
**节一阶微分方程270
一、微分方程的概念 270
二、可分离变量的微分方程271
三、一阶线性微分方程273
第二节可降阶的二阶微分方程277
一、y″=f(x)型的微分方程277
二、y″=f(x,y′)型的微分方程278
三、y″=f(y,y′)型的微分方程279
第三节二阶常系数的线性微分方程280
一、二阶线性微分方程解的结构280
二、二阶常系数齐次线性方程的解法282
三、二阶常系数非齐次线性方程的解法283
本章小结286
复习题十二287
习题参考答案289
参考文献321
高等数学 作者简介
于红霞,河南化工职业学院,副教授, 河南化工职业学院数学教研室主任,副教授; 1985年河南师范大学数学系数学专业毕业,从事《高等数学》教学30年;2006年获得河南省教育厅学术技术带头人,2012年获得河南省教学系统优秀标兵,2011年辅导学生
参加全国大学生数学建模大赛,获得国家级二等奖,连续10年评为学院优秀教师,教学能手。