零零教育信息网 首页 > 图书 > 人文社科类图书 > 正文 返回 打印

相平衡.相图和相变-其热力学基础-第二版-(影印版)

  2020-06-21 00:00:00  

相平衡.相图和相变-其热力学基础-第二版-(影印版) 本书特色

《相平衡、相图和相变——其热力学基础(第二版)(英文影印版)》主要内容为现代计算机应用观点下的热力学基本原理。 化学平衡和化学变化的理论基础也是本书的内容之一,其重点在于相图的性质。本书从基本原理出发,讨论延及多相的系统。第二版新增加的内容包括不可逆热力学、极值原理和表面、界面热力学等等。 平衡条件的理论刻画、系统的平衡状态和达到平衡时的变化都以图解的形式给出。   《相平衡、相图和相变——其热力学基础(第二版)(英文影印版)》适合材料科学与工程领域的研究人员、研究生和高年级本科生阅读。

相平衡.相图和相变-其热力学基础-第二版-(影印版) 内容简介

《相平衡、相图和相变——其热力学基础(第二版)》是影印版英文专著,原书由剑桥大学出版社于2008年出版。相平衡、相变等热力学原理是理解、设计材料属性的基础。计算工具的出现使材料学家能够处理越来越复杂的情况,但对于热力学基础理论的理解也越来越重要。本书图文并茂,深入浅出地讲解了热力学原理以及在计算机计算中的应用,对于材料科学、材料工程方面的研究者会有很大帮助。

相平衡.相图和相变-其热力学基础-第二版-(影印版) 目录

preface to second edition page xii
preface to first edition xiii
1 basic concepts of thermodynamics 
 1.1 external state variables 
 1.2 internal state variables 
 1.3 the first law of thermodynamics 
 1.4 freezing-in conditions 
 1.5 reversible and irreversible processes 
 1.6 second law of thermodynamics 
 1.7 condition of internal equilibrium 
 1.8 driving force 
 1.9 combined first and second law 
 1.10 general conditions of equilibrium 
 1.11 characteristic state functions 
 1.12 entropy 
2 manipulation of thermodynamic quantities 
 2.1 evaluation of one characteristic state function from another 
 2.2 internal variables at equilibrium 
 2.3 equations of state 
 2.4 experimental conditions 
 2.5 notation for partial derivatives 
 2.6 use of various derivatives 
 2.7 comparison between cv and cp 
 2.8 change of independent variables 
 2.9 maxwell relations 
3 systems with variable composition 
 3.1 chemical potential 
 3.2 molar and integral quantities 
 3.3 more about characteristic state functions 
 3.4 additivity of extensive quantities. free energy and exergy 
 3.5 various forms of the combined law 
 3.6 calculation of equilibrium 
 3.7 evaluation of the driving force 
 3.8 driving force for molecular reactions 
 3.9 evaluation of integrated driving force as function of
 t or p 
 3.10 effective driving force 
4 practical handling of multicomponent systems 
 4.1 partial quantities 
 4.2 relations for partial quantities 
 4.3 alternative variables for composition 
 4.4 the lever rule 
 4.5 the tie-line rule 
 4.6 different sets of components 
 4.7 constitution and constituents 
 4.8 chemical potentials in a phase with sublattices 
5 thermodynamics of processes 
 5.1 thermodynamic treatment of kinetics of
 internal processes 
 5.2 transformation of the set of processes 
 5.3 alternative methods of transformation 
 5.4 basic thermodynamic considerations for processes 
 5.5 homogeneous chemical reactions 
 5.6 transport processes in discontinuous systems 
 5.7 transport processes in continuous systems 
 5.8 substitutional diffusion 
 5.9 onsager’s extremum principle 
6 stability 
 6.1 introduction 
 6.2 some necessary conditions of stability 
 6.3 sufficient conditions of stability 
 6.4 summary of stability conditions 
 6.5 limit of stability 
 6.6 limit of stability against fluctuations in composition 
 6.7 chemical capacitance 
 6.8 limit of stability against fluctuations of
 internal variables 
 6.9 le chatelier’s principle 
7 applications of molar gibbs energy diagrams 
 7.1 molar gibbs energy diagrams for binary systems 
 7.2 instability of binary solutions 
 7.3 illustration of the gibbs–duhem relation 
 7.4 two-phase equilibria in binary systems 
 7.5 allotropic phase boundaries 
 7.6 effect of a pressure difference on a two-phase
 equilibrium 
 7.7 driving force for the formation of a new phase 
 7.8 partitionless transformation under local equilibrium 
 7.9 activation energy for a fluctuation 
 7.10 ternary systems 
 7.11 solubility product 
8 phase equilibria and potential phase diagrams 
 8.1 gibbs’ phase rule 
 8.2 fundamental property diagram 
 8.3 topology of potential phase diagrams 
 8.4 potential phase diagrams in binary and multinary systems 
 8.5 sections of potential phase diagrams 
 8.6 binary systems 
 8.7 ternary systems 
 8.8 direction of phase fields in potential phase diagrams 
 8.9 extremum in temperature and pressure 
9 molar phase diagrams 
 9.1 molar axes 
 9.2 sets of conjugate pairs containing molar variables 
 9.3 phase boundaries 
 9.4 sections of molar phase diagrams 
 9.5 schreinemakers’ rule 
 9.6 topology of sectioned molar diagrams 
10 projected and mixed phase diagrams 
 10.1 schreinemakers’ projection of potential phase diagrams 
 10.2 the phase field rule and projected diagrams 
 10.3 relation between molar diagrams and schreinemakers’
 projected diagrams 
 10.4 coincidence of projected surfaces 
 10.5 projection of higher-order invariant equilibria 
 10.6 the phase field rule and mixed diagrams 
 10.7 selection of axes in mixed diagrams 
 10.8 konovalov’s rule 
 10.9 general rule for singular equilibria 
11 direction of phase boundaries 
 11.1 use of distribution coefficient 
 11.2 calculation of allotropic phase boundaries 
 11.3 variation of a chemical potential in a two-phase field 
 11.4 direction of phase boundaries 
 11.5 congruent melting points 
 11.6 vertical phase boundaries 
 11.7 slope of phase boundaries in isothermal sections 
 11.8 the effect of a pressure difference between two phases 
12 sharp and gradual phase transformations 
 12.1 experimental conditions 
 12.2 characterization of phase transformations 
 12.3 microstructural character 
 12.4 phase transformations in alloys 
 12.5 classification of sharp phase transformations 
 12.6 applications of schreinemakers’ projection 
 12.7 scheil’s reaction diagram 
 12.8 gradual phase transformations at fixed composition 
 12.9 phase transformations controlled by a chemical potential 
13 transformations in closed systems 
 13.1 the phase field rule at constant composition 
 13.2 reaction coefficients in sharp transformations
 for p = c + 
 13.3 graphical evaluation of reaction coefficients 
 13.4 reaction coefficients in gradual transformations
 for p = c 
 13.5 driving force for sharp phase transformations 
 13.6 driving force under constant chemical potential 
 13.7 reaction coefficients at constant chemical potential 
 13.8 compositional degeneracies for p = c 
 13.9 effect of two compositional degeneracies for p = c . 
14 partitionless transformations 
 14.1 deviation from local equilibrium 
 14.2 adiabatic phase transformation 
 14.3 quasi-adiabatic phase transformation 
 14.4 partitionless transformations in binary system 
 14.5 partial chemical equilibrium 
 14.6 transformations in steel under quasi-paraequilibrium 
 14.7 transformations in steel under partitioning of alloying elements 
15 limit of stability and critical phenomena 
 15.1 transformations and transitions 
 15.2 order–disorder transitions 
 15.3 miscibility gaps 
 15.4 spinodal decomposition 
 15.5 tri-critical points 
16 interfaces 
 16.1 surface energy and surface stress 
 16.2 phase equilibrium at curved interfaces 
 16.3 phase equilibrium at fluid/fluid interfaces 
 16.4 size stability for spherical inclusions 
 16.5 nucleation 
 16.6 phase equilibrium at crystal/fluid interface 
 16.7 equilibrium at curved interfaces with regard to composition 
 16.8 equilibrium for crystalline inclusions with regard to composition 
 16.9 surface segregation 
 16.10 coherency within a phase 
 16.11 coherency between two phases 
 16.12 solute drag 
17 kinetics of transport processes 
 17.1 thermal activation 
 17.2 diffusion coefficients 
 17.3 stationary states for transport processes 
 17.4 local volume change 
 17.5 composition of material crossing an interface 
 17.6 mechanisms of interface migration 
 17.7 balance of forces and dissipation 
18 methods of modelling 
 18.1 general principles 
 18.2 choice of characteristic state function 
 18.3 reference states 
 18.4 representation of gibbs energy of formation 
 18.5 use of power series in t 
 18.6 representation of pressure dependence 
 18.7 application of physical models 
 18.8 ideal gas 
 18.9 real gases 
 18.10 mixtures of gas species 
 18.11 black-body radiation 
 18.12 electron gas 
19 modelling of disorder 
 19.1 introduction 
 19.2 thermal vacancies in a crystal 
 19.3 topological disorder 
 19.4 heat capacity due to thermal vibrations 
 19.5 magnetic contribution to thermodynamic properties 
 19.6 a simple physical model for the magnetic contribution 
 19.7 random mixture of atoms 
 19.8 restricted random mixture 
 19.9 crystals with stoichiometric vacancies 
 19.10 interstitial solutions 
20 mathematical modelling of solution phases 
 20.1 ideal solution 
 20.2 mixing quantities 
 20.3 excess quantities 
 20.4 empirical approach to substitutional solutions 
 20.5 real solutions 
 20.6 applications of the gibbs–duhem relation 
 20.7 dilute solution approximations 
 20.8 predictions for solutions in higher-order systems 
 20.9 numerical methods of predictions for higher-order systems 
21 solution phases with sublattices 
 21.1 sublattice solution phases 
 21.2 interstitial solutions 
 21.3 reciprocal solution phases 
 21.4 combination of interstitial and substitutional solution 
 21.5 phases with variable order 
 21.6 ionic solid solutions 
22 physical solution models 
 22.1 concept of nearest-neighbour bond energies 
 22.2 random mixing model for a substitutional solution 
 22.3 deviation from random distribution 
 22.4 short-range order 
 22.5 long-range order 
 22.6 long- and short-range order 
 22.7 the compound energy formalism with short-range order 
 22.8 interstitial ordering 
 22.9 composition dependence of physical effects 
references 
index
相平衡.相图和相变-其热力学基础-第二版-(影印版)

http://www.00-edu.com/tushu/sh1/202007/2619001.html十二生肖
十二星座