组合数学-原书第5版 内容简介
本书是系统阐述组合数学基础、理论、方法和实例的优秀教材,出版30多年来多次改版,被mit、哥伦比亚大学、uiuc、威斯康星大学等众多国外高校采用,对国内外组合数学教学产生了较大影响,也是相关学科的主要参考文献之一。
本书侧重于组合数学的概念和思想,论述了鸽巢原理、排列与组合、二项式系数、容斥原理及应用、递推关系和生成函数、特殊计数序列、二分图中的匹配、组合设计、图论、有向图及网络、polya计数法等。此外,各章均包含大量练习题,并在书末给出了参考答案与提示。
本书适合作为高等院校相关专业组合数学课程的教材。
组合数学-原书第5版 目录
出版者的话
译者序
前言
第1章 什么是组合数学
1.1 例子:棋盘的完美覆盖
1.2 例子:幻方
1.3 例子:四色问题
1.4 例子:36军官问题
1.5 例子:*短路径问题
1.6 例子:相互重叠的圆
1.7 例子:nim游戏
1.8 练习题
第2章 排列与组合
2.1 四个基本的计数原理
2.2 集合的排列
组合数学-原书第5版 作者简介
Richard A.
Brualdi 美国威斯康星大学麦迪逊分校数学系教授(现已退休),曾任系主任多年。他的研究方向包括组合数学、图论、线性代数和矩阵理论、编码理论等。Brualdi教授的学术活动非常丰富,担任过多种学术期刊的主编。2000年由于在组合数学研究中所做出的杰出终身成就而获得组合数学及其应用学会颁发的欧拉奖章。