数学证明 内容简介
本书共十章, 内容包括: 证明的由来、证明的功用、证明与理解、反证法、存在性证明等。
数学证明 目录
一 证明的由来 1.1 证明的作用是什么 1.2 数学证明的由来 1.3 古代希腊的数学证明 1.4 证明方法不限于数学 1.5 东方古代社会的数学证明
二 证明的功用 2.1 直观可靠吗 2.2 证明可靠吗 2.3 证明是完全客观的吗 2.4 证明与信念 2.5 证明与理解
三 证明与理解(一) 3.1 一个数学认知能力的实验 3.2 二次方程的解的公式 3.3 希腊《原本》里的勾股定理 3.4 刘徽的一题多证 3.5 高斯的一题多证
四 证明与理解(二) 4.1 欧拉的七桥问题 4.2 欧拉的多面体公式 4.3 几个重要的不等式
五 证明与理解(三) 5.1 一条关于正多边形的几何定理 5.2 薄饼与三明治 5.3 微积分基本定理 5.4 舞伴的问题 5.5 几个著名的反例
六 证明与理解(四) 6.1 四色问题 6.2 费马*后定理 6.3 一致收敛的函数序列
七 反证法 7.1 两个古老的反证法证明 7.2 间接证明与反证法 7.3 逆否命题 7.4 施坦纳一李密士定理 7.5 反证法在数学以外的运用
八 存在性证明 8.1 两个头发根数相同的人 8.2 一条古老的存在性定理 8.3 数学乎神学乎 8.4 高斯类数猜想的征服 8.5 存在性证明的功用 8.6 极值问题的解的存在性 8.7 有理数与无理数 8.8 代数数与超越数
九 不可能性证明 9.1 十五方块的玩意 9.2 一个很古老的不可能性证明 9.3 古代三大难题 9.4 不可能证明的证明 9.5 希尔伯特的问题
十一 次亲身经历:*长周长的内接多边形 10.1 一个熟悉的问题 10.2 初步的试验结果 10.3 旁敲侧击 10.4 艰苦战斗 10.5 拨开云雾见青天 10.6 各归其位 10.7 余音未了
附录 后记 人名中外文对照表
|