零零教育信息网 首页 > 图书 > 科技 > 正文 返回 打印

固体力学问题的自然单元法

  2020-07-13 00:00:00  

固体力学问题的自然单元法 本书特色

科学和工程实际中的物理过程常可归结为偏微分方程边值和初值问题的求解,由于问题的复杂性需要采用各种数值方法进行求解。虽然有限单元法具有理论基础强、通用灵活等优点,但随着计算对象复杂程度的增加和应用的深入,也逐渐暴露出一些其本身难以克服的缺陷,特别是对于金属加工成型、裂纹动态扩展、移动相边界、流固耦合等涉及大变形的问题,有限元网格可能会发生严重扭曲,对裂纹动态扩展问题则需要不断地重新划分网格以模拟扩展过程。自然单元法(nem)是一种求解偏微分方程的无网格数值方法,采用自然邻点坐标作为插值函数。自然邻点插值的基础是点集的voronoi图和及其对偶delaunay三角化结构。自然邻点插值方案具有优良的空间邻接关系,形函数满足单位分解条件和线性完备性。与大多数其它的无网格方法不同,自然单元法形函数具有严格的插值性能,可以方便地直接施加本质边界条件。自然单元法在理论和应用方面的成功吸引了很多研究者的注意,具有广阔的应用前景。本书在国家973项目和国家自然科学基金的支持下,基于前人工作的基础对固体力学问题的自然单元法相关理论和方法进行了研究,并将其应用于平板弯曲问题、断裂力学问题和非线性问题等方面的分析计算中。

固体力学问题的自然单元法

http://www.00-edu.com/tushu/kj1/202007/2629893.html十二生肖
十二星座