从数学竞赛到竞赛数学-走进教育数学-(第二版) 本书特色
朱华伟著北京《从数学竞赛到竞赛数学》以国际数学奥林匹克及国内外高层次数学竞赛为背景,论述竞赛数学的形成背景,探讨竞赛数学的教育价值,归纳出竞赛数学的基本特征,把竞赛数学涉及的内容归为数列、不等式、多项式、函数方程、平面几何、数论、组合数学、组合几何8节,每一节内容包括背景分析、基本问题、方法技巧、概念定理、经典赛题,试图对数学竞赛所涉及的内容、方法、技巧作一系统总结和界定,并通过典型的赛题进行阐述.注意题目的来源与推广的讨论,重视新问题的收集与传统解法的优化,反映了国内外数学竞赛命题的*新潮流.以此为基础,研究竞赛数学的命题原则及命题方法.
从数学竞赛到竞赛数学-走进教育数学-(第二版) 内容简介
《从数学竞赛到竞赛数学》可作为高中生参加数学竞赛,中学数学教师作数学竞赛辅导、进修,高等师范院校数学教育专业开设竞赛数学课程的教材或教学参考书.数学业余爱好者也可以从本《从数学竞赛到竞赛数学》找到许多新颖有趣的问题和令人耳目一新的巧妙解题方法.冥思苦想的命题者也许可以从《从数学竞赛到竞赛数学》找到灵感,提出更多新问题为竞赛数学注入新的血液
从数学竞赛到竞赛数学-走进教育数学-(第二版) 目录
总序第二版前言
**版前言
第1章 从数学竞赛到竞赛数学
1.1数学竞赛的产生与发展
1.2世界各国数学竞赛概况
1.3数学竞赛在中国
1.4数学竞赛的教育价值
1.5数学竞赛与竞赛数学
1.6竞赛数学的文献分析
第2章 竞赛数学的基本特征
2.1开放性2.2趣味性
2.3新颖性
2.4创造性
2.5研究性
第3章 竞赛数学的问题与方法
3.1数列
3.2不等式
3.3多项式
3.4函数方程
3.5平面几何
3.6数论
3.7组合数学
3.8组合几何
第4章 竞赛数学命题研究
4.1竞赛数学的命题原则4.2竞赛数学的命题方法
4.3案例11992年cmo试题的评价
4.4案例22006年全国高中数学联赛的函数迭代题
4.5案例3schur不等式及其变式
4.6案例4嵌入不等式
参考文献