统计力学-非平衡态热力学的随机方法-第二版-(影印版) 本书特色
《统计力学——非平衡态热力学的随机方法(第二版)(英文影印版)》详细地介绍了用统计力学方法处理非平衡态热力学和统计物理问题的研究。其中统计方法包含了经典统计和量子统计。本书研究对象主要为平均能量守恒和熵增的系统。探讨了热噪声、化学反应、扩散等等问题。
《统计力学——非平衡态热力学的随机方法(第二版)(英文影印版)》可作为统计物理、凝聚态物理、材料科学领域的研究者的参考书,也可供相关领域研究生作为教材使用。
统计力学-非平衡态热力学的随机方法-第二版-(影印版) 内容简介
统计力学无疑是现代物理学的基石之一。考虑到多粒子体系,统计力学是不能绕过的、**的工具。另外,几乎所有日常的物理学应用都与统计力学有关。《统计力学——非平衡态热力学的随机方法(第二版)(英文影印版)》作为统计力学的专著,侧重于非平衡态热力学问题,是由至于这一方面研究的学者和研究生不应错过的佳作。
统计力学-非平衡态热力学的随机方法-第二版-(影印版) 目录
preface classical statistical dynamics 1.introduction 2.probability theory 2.1 sample spaces and states 2.2 random variables, algebras 2.3 entropy 2.4 exercises 3.linear dynamics 3.1 reversible dynamics 3.2 random dynamics 3.3 convergence to equilibrium 3.4 markov chains 3.5 exercises 4.isolated dynamics 4.1 the boltzmann map 4.2 the heat-particle 4.3 the hard-core model of chemical kinetics 4.3.1 isomers and diffusion in a force-field 4.3.2 markov dynamics 4.3.3 entropy production 4.3.4 osmosis 4.3.5 exchange diffusion 4.3.6 general diffusions 4.4 chemical reactions 4.4.1 unimolecular reactions 4.4.2 balanced reactions 4.5 energy of solvation 4.6 activity-led reactions 4.7 exercises 5.isothermal dynamics 5.1 legendre transforms 5.2 the free-energy theorem 5.3 chemical kinetics 5.4 convergence in norm 5.5 dilation of markov chains 5.6 exercises 6.driven systems 6.1 sources and sinks 6.2 a poor conductor 6.3 a driven chemical system 6.4 how to add noise 6.5 exercises 7.fluid dynamics 7.1 hydrostatics of a gas of hard spheres 7.2 the fundamental equation 7.3 the euler equations 7.4 entropy production 7.5 a correct navier-stokes system quantum statistical dynamics 8.introduction to quantum theory 9.quantum probability 9.1 algebras of observables 9.2 states 9.3 quantum entropy 9.4 exercises 10.linear quantum dynamics 10.1 reversible dynamics 10.2 random quantum dynamics 10.3 quantum dynamical maps 10.4 exercises 11.isolated quantum dynamics 11.1 the quantum boltzmann map 11.2 the quantum heat-particle 11.3 fermions and ions with a hard core 11.4 the quantum boltzmann equation 11.5 exercises 12.isothermal and driven systems 12.1 isothermal quantum dynamics 12.2 convergence to equilibrium 12.3 driven quantum systems 12.4 exercises 13.infinite systems 13.1 the algebra of an infinite system 13.2 the reversible dynamics 13.3 return to equilibrium 13.4 irreversible linear dynamics 13.5 exercises 14.proof of the second law 14.1 yon neumann entropy 14.2 entropy increase in quantum mechanics 14.3 the quantum kac model 14.4 equilibrium 14.5 the e-limit 14.6 the marginals and entropy 14.7 the results 15.information geometry 15.1 the jaynes-ingarden theory 15.2 non-linear ising dynamics 15.3 ising model close to equilibrium 15.4 non-linear heisenberg model 15.5 estimation; the cramer-rao inequality 15.6 efron, dawid and amari 15.7 entropy methods, exponential families 15.8 the work of pistone and sempi 15.9 the finite-dimensional quantum info-manifold 15.10 araki's expansionals and the analytic manifold 15.11 the quantum young function 15.12 the quantum cramer class 15.13 the parameter-free quantum manifold 15.14 exercises bibliography index
|