索伯列夫空间和插值空间导论 本书特色
《索伯列夫空间和插值空间导论》是以作者研究生教程的讲义为蓝本整理扩充而成,全面讲述了索伯列夫空间和插值理论。书中包括42章,每章尽可能多的包括研究生学习所需的材料,不仅是一部研究生学习的讲义材料,也是很多老师学者关心的课题。通过大量的脚注讲述了本教程的形成过程有关老师的趣闻轶事,这使本书不仅是一本很完善的教程,而且也非常适用于相关专业的科研人员。
目次:历史背景;勒贝格测度,卷积;卷积光滑;阶段,radon测度和分布;张量积密度,结果;支集观点扩充;索伯列夫嵌入理论:1[=p[n;索伯列夫嵌入定理,n[=p[无穷;庞加莱不等式;平衡定理:紧嵌入;边界的一般性,结果;边界上的迹;格林公式;傅里叶变换;hs(rn)迹;太小点的证明;紧嵌入;lax-milgram定理;h(div,ω)空间;插值的背景,复杂方法;实插值,k方法;具有权重的l2空间的插值;实插值,j方法;插值不等式,lions-peetre反复定理;*大函数;双线性和非线性插值;通过插值获得lp,运用规范;索伯列夫嵌入定理方法;索伯列夫嵌入定理综述;
定义索伯列夫空间和besov空间; 性质; 的性质;bv空间中变量;用插值空间代替bv空间;伪线性双曲系统的激波;插值空间
成为迹空间;插值空间中的对偶和紧性;混合问题;参考信息;缩写和数学符号。
读者对象:数学专业的研究生和科研人员。
索伯列夫空间和插值空间导论 目录
1 historical background 2 the lebesgue measure, convolution 3 smoothing by convolution 4 truncation; radon measures; distributions 5 sobolev spaces; multiplication by smooth functions 6 density of tensor products; consequences 7 extending the notion of support 8 sobolev's embedding theorem, i ≤ p < n 9 sobolev's embedding theorem, n ≤ p≤∞ 10 poincare's inequality 11 the equivalence lemma; compact embeddings 12 regularity of the boundary; consequences 13 traces on the boundary 14 (green's formula 15 the fourier transform 16 traces of hs(rn) 17 proving that a point is too small 18 compact embeddings 19 lax-milgram lemma .20 the space h(div;ω) 21 background on interpolation; the complex method 22 real interpolation; k-method 23 interpolation of l2 spaces with weights 24 real interpolation; j-method 25 interpolation inequalities, the spaces (e0, e1)θ,1 26 the lions-peetre reiteration theorem 27 maximal functions 28 bilinear and nonlinear interpolation 29 obtaining lp by interpolation, with the exact norm 30 my approach to sobolev's embedding theorem 31 my generalization of sobolev's embedding theorem 32 sobolev's embedding theorem for besov spaces 33 the lions-magenes space h1/2∞(ω) 34 defining sobolev spaces and besov spaces for ω 35 characterization of ws,p(rn) 36 characterization of ws,p(ω) 37 variants with bv spaces 38 replacing bv by interpolation spaces 39 shocks for quasi-linear hyperbolic systems 40 interpolation spaces as trace spaces 41 duality and compactness for interpolation spaces 42 miscellaneous questions 43 biographical information 44 abbreviations and mathematical notation references index
|