溶液法晶体生长技术-晶体生长手册-第3册-(影印版) 本书特色
《springer手册精选系列·晶体生长手册(第3册):熔液法晶体生长技术(影印版)》关注了溶液生长法。在前两章里讨论了水热生长法的不同方面,随后的三章介绍了非线性和激光晶体、ktp和kdp。通过在地球上和微重力环境下生长的比较给出了重力对溶液生长法的影响的知识。
溶液法晶体生长技术-晶体生长手册-第3册-(影印版) 目录
缩略语
partc 溶液法生长晶体
17 地球微重力下从溶液中生长体材料单晶
17.1 结晶:成核和生长动力学
17.2 低温溶液的晶体生长
17.3 更低温度溶液的晶体生长
17.4 硫酸三甘钛晶体生长:个案研究
17.5 微重力下硫酸三甘钛晶体的溶液生长
17.6 蛋白质晶体生长
17.7 结语
参考文献
18 水热法大尺寸晶体生长
18.1 水热法晶体生长的历史
18.2 水热法晶体生长的热力学基础
18.3 水热法晶体生长的设备
18.4 部分晶体的水热法生长
18.5 精细晶体的水热法生长
18.6 水热法生长纳米晶体
18.7 结语
18.a附录
参考文献
19 水热法与氨热法生长zno和gan
19.1 水热法与氨热法生长大晶体综述
19.2 低缺陷大晶体的生长要求
19.3 物理与数学模型
19.4 过程模拟
19.5 水热法生长zno晶体
19.6 氨热法生长gan
19.7 结论
参考文献
20 ktp型非线性光学晶体的化学计量比和畴结构
20.1 背景
20.2 化学计量比与铁电相转变
20.3 生长引起的铁电畴
20.4 人造畴结构
20.5 非线性光学晶体
参考文献
21 高温溶液生长:用于激光和非线性光学的晶体
21.1 基础
21.2 高温溶液生长
21.3 用tssg法生长激光体材料和nlo单晶
21.4 液相外延:激光和nlo材料的外延膜的生长
参考文献
22 kdp及同类晶体的生长与表征
22.1 背景
22.2 结晶机制和动力学
22.3 单晶的生长技术
22.4 生长条件对晶体缺陷的影响
22.5 晶体质量检测
参考文献
溶液法晶体生长技术-晶体生长手册-第3册-(影印版) 相关资料
施普林格的手册,一贯全面阐述基础理论,提供可靠的研究方法和关键知识皮及大量的参考文献,介绍最新的应用实例,前瞻学科的发展方向。手册作者多为世界首席专家或知名学者。手册具有极大的实用性,其表格、图标、索引等更增加了它的使用价值。
——《springer手册精选系列》推荐委员会
溶液法晶体生长技术-晶体生长手册-第3册-(影印版) 作者简介
Govindhan Dhanaraj is the Manager of Crystal Growth
Technologies at Advanced Renewable Energy Company (ARC Energy) at
Nashua, New Hampshire (USA) focusing on the growth of large size
sapphire crystals for LED lighting applications, characterization
and related crystal growth furnace development. He received his PhD
from the Indian Institute of Science, Bangalore and his Master of
Science from Anna University (India). Immediately after his
doctoral degree, Dr. Dhanaraj joined a National Laboratory,
presently known as Rajaramanna Center for Advanced Technology in
India, where he established an advanced Crystal Growth Laboratory
for the growth of optical and laser crystals. Prior to joining ARC
Energy, Dr. Dhanaraj served as a Research Professor at the
Department of Materials Science and Engineering, Stony Brook
University, NY, and also held a position of Research Assistant
Professor at Hampton University, VA. During his 25 years of focused
expertise in crystal growth research, he has developed optical,
laser and semiconductor bulk crystals and SiC epitaxial films using
solution, flux, Czochralski, Bridgeman, gel and vapor methods, and
characterized them using x-ray topography, synchrotron topography,
chemical etching and optical and atomic force microscopic
techniques. He co-organized a symposium on Industrial Crystal
Growth under the 17th American Conference on Crystal Growth and
Epitaxy in conjunction with the 14th US Biennial Workshop on
Organometallic Vapor Phase Epitaxy held at Lake Geneva, WIin 2009.
Dr. Dhanaraj has delivered invited lectures and also served as
session chairman in many crystal growth and materials science
meetings. He has published over 100 papers and his research
articles have attracted over 250 rich citations.