Fundamental Principles of Nuclear Engineering 核工程基本原理-英文版 本书特色
本书着力于核工程所涉及领域的基本原理,打通各个领域的壁垒,使核工程所涉及到的各个领域的基本原理融会贯通,使读者能够掌握全面的知识体系。
Fundamental Principles of Nuclear Engineering 核工程基本原理-英文版 内容简介
核工程所涉及到的知识面非常宽,除了数学、物理和化学以外,还涉及到热力学、传热、流体、电气、仪控、材料、化工、机械、核物理、反应堆理论、辐射防护等诸多领域。每一个领域都有一些基本的原理和核工程紧密相关。该书作者着力于基本原理的阐述,使核工程所涉及到的各个领域的基本原理融会贯通,实属难能可贵。该书用全英文编写,对于核电走出去培养外国留学生和中国学生熟悉专业英语词汇均有裨益。
Fundamental Principles of Nuclear Engineering 核工程基本原理-英文版 目录
1Fundamentals of Mathematics and Physics
1.1Calculus
1.1.1Differential and Derivative
1.1.2Integral
1.1.3Laplace Operator
1.2Units
1.2.1Unit Systems
1.2.2Conversion of Units
1.2.3Graphics of Physical Quantity
Exercises
2Thermodynamics
2.1Thermodynamic Properties
2.2Energy
2.2.1Heat and Work
2.2.2Energy and Power
2.3System and Process
2.4Phase Change
2.5Property Diagrams
2.5.1Pressure?Temperature (p?T) Diagram
2.5.2Pressure?Specific Volume (p?v) Diagram
2.5.3Pressure?Enthalpy (p?h) Diagram
2.5.4Enthalpy?Temperature (h?T) Diagram
2.5.5Temperature?Entropy (T?s) Diagram
2.5.6Enthalpy?Entropy (h?s)Diagram or
Mollier Diagram
2.6The First Law of Thermodynamics
2.6.1Rankine Cycle
2.6.2Utilization of the First Law of
Thermodynamics in
Nuclear Power Plant
2.7The Second Law of Thermodynamics
2.7.1Entropy
2.7.2Carnot?s Principle
2.8Power Plant Components
2.8.1Turbine Efficiency
2.8.2Pump efficiency
2.8.3Ideal and Real Cycle
2.9Ideal Gas Law
Exercises
3Heat Transfer
3.1Heat Transfer Terminology
3.2Heat Conduction
3.2.1Fourier?s Law of Conduction.
3.2.2Rectangular
3.2.3Equivalent Resistance
3.2.4Cylindrical
3.3Convective Heat Transfer
3.3.1Convective Heat Transfer Coefficient
3.3.2Overall Heat Transfer Coefficient
3.4Radiant Heat Transfer
3.4.1Thermal Radiation
3.4.2Black Body Radiation
3.4.3Radiation Configuration Factor
3.5Heat Exchangers
3.6Boiling Heat Transfer
3.6.1Flow Boiling
3.6.2Departure from Nucleate Boiling and
Critical Heat Flux
3.7Heat Generation
3.7.1Total Power of Reactor Core
3.7.2Flatten of Power
3.7.3Hot Channel Factor
3.7.4Decay Heat
Exercises
4Fluid Flow
4.1Continuity Equation
4.2Laminar and Turbulent Flow
4.2.1Reynolds Number and Hydraulic Diameter
4.2.2Flow Velocity Profiles
4.2.3Average (Bulk) Velocity
4.2.4Viscosity
4.3Bernoulli?s Equation
4.3.1Venturi Meter
4.3.2Extended Bernoulli?s Equation
4.4Head Loss
4.4.1Frictional Loss
4.4.2Minor Losses
4.5Natural Circulation
4.5.1Thermal Driving Head
4.5.2Conditions Required for Natural
Circulation
4.6Two?Phase Fluid Flow
4.6.1Two?Phase Friction
Multiplier
4.6.2Flow Patterns
4.6.3Flow Instability
4.7Some Specific Phenomenon
4.7.1Pipe Whip
4.7.2Water Hammer and Steam Hammer
Exercises
5Electrical Science
5.1Basic Electrical Theory
5.1.1The Atom
5.1.2Electrostatic Force
5.1.3Coulomb?s Law of
Electrostatic Charges
5.2Electrical Terminology
5.3Ohm?s Law
5.4Methods of Producing Voltage (Electricity)
5.4.1Electrochemistry
5.4.2Static Electricity
5.4.3Magnetic Induction
5.4.4Piezoelectric Effect
5.4.5Thermoelectricity
5.4.6Photoelectric Effect
5.4.7Thermionic Emission
5.5Magnetism
5.5.1Magnetic Flux
5.5.2Electromagnetism
5.5.3Magnetomotive Force
5.5.4Magnetic Field Intensity
5.5.5Permeability and Reluctance
5.5.6Magnetic Circuits
5.5.7BH Magnetization Curve
5.5.8Magnetic Induction
5.5.9Faraday?s Law of Induced
Voltage
5.6DC Theory
5.6.1DC Sources
5.6.2Resistance and Resistivity
5.6.3Kirchhoff?s Law
5.6.4Inductors
5.6.5Capacitor
5.6.6DC Generators
5.6.7DC Motors
5.7Alternating Current
5.7.1Development of a Sine?Wave Output
5.7.2Basic AC Reactive Components
5.7.3AC Power
5.7.4Three?Phase Circuits
5.7.5AC Generator
5.7.6AC Motor
5.7.7Transformer
Exercises
6Instrumentation and Control
6.1Temperature Detect
6.1.1Resistance Temperature Detector
6.1.2Thermocouple
6.1.3Temperature Detection Circuitry
6.2Pressure Detector
6.2.1Bellows?Type Detectors
6.2.2Bourdon Tube?Type
Detectors
6.2.3Resistance?Type
Transducers
6.3Level Detector
6.3.1Gauge Glass
6.3.2Ball Float
6.3.3Conductivity Probe
6.3.4Differential Pressure Level Detectors
6.4Flow Measurement
6.4.1Venturi Flow Meter
6.4.2Pitot Tube
6.4.3Rotameter
6.4.4Steam Flow Measurement
6.5Position Measurement
6.5.1Synchro Equipment
6.5.2Limit Switch
6.5.3Reed Switch
6.5.4Potentiometer
6.5.5Linear Variable Differential
Transformer
6.6Radioactivity Measurement
6.6.1Radiation Type
6.6.2Gas Ionization Detector
6.6.3Proportional Counter
6.6.4Ionization Chamber
6.6.5Geiger?Miller Counter
6.6.6Scintillation Counter
6.6.7Gamma Spectroscopy
6.6.8Miscellaneous Detectors
6.6.9Circuitry and Circuit Elements
6.6.10Detect of Neutron Flux in Reactor
6.6.11Nuclear Power Measurement
6.7Principles of Process Control
6.7.1Control Loop Diagrams
6.7.2Two Position Control Systems
6.7.3Proportional Control
6.7.4Integral Control Systems
6.7.5Proportional Plus Integral Control
Systems
6.7.6Proportional Plus Derivative Control
Systems
6.7.7Proportional?Integral?Derivative
Control Systems
6.7.8Controllers and Valve Actuators
Exercises
7Chemistry and Chemical Engineering
7.1Chemical Basis
7.1.1The Atom Structure
7.1.2Chemical Elements and Molecules
7.1.3Avogadro?s Number
7.1.4The Periodic Table
7.2Chemical Bonding
7.2.1Ionic Bond
7.2.2Covalent Bonds
7.2.3Metallic Bonds
7.2.4Van der Waals Forces
7.2.5Hydrogen Bond
7.3Organic Chemistry
7.4Chemical Equations
7.4.1Le Chatelier?s Principle
7.4.2Concentrations of Solutions
7.4.3Chemical Equations
7.5Acids, Bases, Salts and pH
7.6Corrosion
7.6.1Corrosion Theory
7.6.2General Corrosion
7.6.3Crud and Galvanic Corrosion
7.6.4Specialized Corrosion
7.7Water Chemistry of Reactor
7.7.1Chemistry Parameters of Reactor
7.7.2Water Treatment
7.7.3Dissolved Gases and Suspended Solids
7.7.4Water Purity
7.7.5Radiation Chemistry of Water
7.8Extraction and Refinement of Uranium
7.8.1Leaching of Uranium
7.8.2Extraction of Uranium
7.8.3Refining of Uranium
7.9Chemical Conversion of Uranium
7.9.1Preparation of Uranium Dioxide
7.9.2Preparation of UF4
7.9.3Preparation of UF6
7.9.4Preparation of Metallic Uranium
Exercises
8Material Science
8.1Structure of Metal
8.1.1Types of Crystal
8.1.2Grain Structure and Boundary
8.1.3Polymorphism
8.1.4Alloy
8.1.5Imperfections in Metals
8.2Properties of Metal
8.2.1Stress and Strain
8.2.2Hooke?s Law
8.2.3Relationship between Stress and Strain
8.2.4Physical Properties of Material
8.3Heat Treatment of Metal
8.4Hydrogen Embrittlement and Irradiation
Effect
8.5Thermal Stress
8.6Brittle Fracture
8.6.1Brittle Fracture Mechanism
8.6.2Nil?Ductility Transition
Temperature
8.7Materials in Nuclear Reactor
8.7.1Nuclear Fuel
8.7.2Structure Materials
8.7.3Coolant
8.7.4Moderator
Exercises
9Mechanical Science
9.1Diesel Engine
9.1.1Major Components of a Diesel Engine
9.1.2Diesel Engine Support Systems
9.1.3Principle of Diesel Engine
9.2Heat Exchanger
9.3Pump
9.3.1Centrifugal Pump
9.3.2Positive Displacement Pump
9.3.3Coolant Pump for Pressurized Water
Reactor Nuclear
Power Plant
9.4Valve
9.4.1Valve Type
9.4.2Basic Structure of Valve
9.4.3Typical Valves
9.4.4Pressure Relief Valve and Safety Valve
9.5Miscellaneous Mechanical Components
9.5.1Air Compressor
9.5.2Hydraulic Press
9.5.3Evaporator
9.5.4Steam Generator
9.5.5Cooling Tower
9.5.6Pressurizers
9.5.7Diffusion Separator
Exercises
10Nuclear Physics
10.1Atomic Nucleus
10.1.1Atomic Number and Mass Number
10.1.2Isotope
10.1.3Chart of Nuclides
10.2Mass Defect and Binding Energy
10.2.1Mass Loss
10.2.2Binding Energy
10.2.3Energy Level Theory
10.3Radioactive Decay
10.3.1Discovery of Radioactive Decay
10.3.2Category Decay
10.3.3Decay Chain
10.3.4Half?Life
10.3.5Radioactivity
10.3.6Radioactive Equilibrium
10.4Neutron Interactions with Matter
10.4.1Scattering Process
10.4.2Thermal Neutron
10.4.3Radiative Capture Effect
10.4.4Particle Emission
10.4.5Fission
10.5Nuclear Fission
10.5.1The Liquid Drop Model of Nuclear
Fission
10.5.2Fissile Material
10.5.3Specific Binding Energy
10.5.4The Energy Released from Nuclear
Fission
Exercises
11Reactor Theory
11.1Neutron Source
11.1.1Natural Neutron Source
11.1.2Artificial Neutron Source
11.1.3PWR Neutron Source Assembly
11.2Nuclear Cross Section
11.2.1Neutron Reaction Cross Section
11.2.2Mean Free Path
11.2.3Temperature Effects Cross Section
11.3Neutron Flux
11.3.1Fick?s Law
11.3.2Neutron Diffusion Equation
11.3.3Self?Shielding
11.4Reactor Power
11.4.1Fission Rate
11.4.2Volumetric Heat Release Rate
11.4.3Nuclear Power of Reactor Core
11.5Neutron Moderation
11.5.1Neutron Slowing
11.5.2The Release of Fission Neutron
11.5.3Neutron Generation Time
11.5.4Neutron Energy Spectrum
11.5.5Fermi Age Model
11.5.6Most Probable Neutron Velocities
11.6Neutron Life Cycle and Critical
11.6.1Multiplication Factor
11.6.2Four Factor Formula
11.6.3Effective Multiplication Factor
11.6.4Critical Size
11.6.5Criticality Calculation
11.7Reactivity
11.7.1Reactivity Coefficient
11.7.2Temperature Reactivity Coefficient
11.7.3Pressure Coefficient
11.7.4Void Coefficient
11.7.5Power Coefficient
11.8Neutron Poisons
11.8.1Burnable Poisons
11.8.2Soluble Poisons
11.8.3Control Rods
11.8.4Xenon
11.8.5Samarium
11.9Subcritical Multiplication
11.9.1Subcritical Multiplication Factor
11.9.2Effect of Reactivity Changes on
Subcritical Multiplication
11.9.3Use of 1/M Plots
11.10Reactor Kinetics
11.10.1Reactor Kinetics Equations
11.10.2In Hour Equation
11.10.3Reactor Period
11.11Nuclear Power Plant Operation
11.11.1Startup of Reactor
11.11.2Startup of Nuclear Power Plant
11.11.3Nuclear Power Plant Shutdown
11.11.4Status of Nuclear Power Plant
11.12Isotope Separation
11.12.1SWU and Value Function
11.12.2Diffusion Method of Isotope
Separation
11.12.3High?Speed Centrifugation
Method
11.12.4Laser Method
11.12.5Separation Nozzle
11.13Nuclear Fuel Cycle
11.13.1Cyclic Manner
11.13.2Key Aspects of Nuclear Fuel Cycle
11.13.3Nuclear Fuel Cycle Cost
Exercises
12Radiation Protection
12.1Radiation Quantities and Units
12.1.1Describe the Amount of Radiation
Source and
Radiation Field
12.1.2Usual Quantities of Dosimetry
12.1.3Commonly Used Quantities in Radiation
Protection
12.2Basic Principles and Standards of
Radiation Protection
12.2.1The Basic Principles of Radiation
Protection
12.2.2Radiation Protection Standards
12.3Radiation Protection Methods
12.3.1Human Radiation Effects
12.3.2Deterministic Effects
12.3.3Random Effects
12.4Radiation Monitoring
12.5Evaluation of Radiation Protection
12.6Radiation Emergency
Exercises
Symbol Table
References
Fundamental Principles of Nuclear Engineering 核工程基本原理-英文版 作者简介
俞冀阳,清华大学工程物理系核能科学与工程管理研究所,副教授,博导。1994年毕业于清华大学工程物理系,1999年获清华大学工学博士后在清华大学工程物理系任教。主要从事核反应堆工程与安全方面的人才培养和科学研究工作。已出版的教材与专著有:《反应堆热工水力学》、《热工流体数值计算》、《核电厂事故分析》、《核心理学》、《核动力装置设计与优化原理》、《核工程基本原理》等。英文版专著有国际原子能机构出版的IAEA-TECDOC-1395《Comparison of Heavy Water Reactor Thermalhydraulic Code Predictions with Small Break LOCA Experimental Data》。