零零教育信息网 首页 > 图书 > 科技 > 正文 返回 打印

炉内传播理论与计算

  2020-08-02 00:00:00  

炉内传播理论与计算 本书特色

本书简明而系统地阐述了炉内传热的基本原理、计算方法。全书共分七章,包括辐射换热的基本理论与计算,层燃炉、室燃炉和循环床锅炉的炉膛传热计算方法,锅炉热力计算方法以及积灰、结渣对炉膛传热的影响等内容。本书作为衔接基础课传热学和锅炉课程设计之间的教材,对从基础理论到工程实际的处理方法给予了充分的重视。结合实际的工程案例,提供了完整的炉膛传热和热力计算的实例,并结合*的研究进展系统介绍了气固两相流的传热和循环流化床锅炉的传热计算。 本书可作为高等学校热能工程类专业的高年级本科生教材或教学参考书,也可供相关专业工程技术人员参考。

炉内传播理论与计算 内容简介

通过该课程学习使同学掌握燃气、燃油、燃煤锅炉的炉内传热计算和国内水动力学计算,为将来从事能源动力行业大型蒸汽发生器(即锅炉,是热力发电站的三大主机之一,这三大主机分别为锅炉、汽轮机和发电机)的设计奠定基础。

炉内传播理论与计算 目录

Contents Foreword v Preface vii Symbols ix 1. Theoretical Foundation and Basic Properties of Thermal Radiation 1.1. Thermal Radiation Theory—Planck’s Law 3 1.2. Emissive Power and Radiation Characteristics 6 1.2.1. Description of Radiant Energy 6 1.2.2. Physical Radiation Characteristics 9 1.2.3. Monochromatic and Directional Radiation 11 1.3. Basic Laws of Thermal Radiation 12 1.3.1. Planck’s Law and Corollaries 12 1.3.2. Lambert’s Law 15 1.3.3. Kirchhoff’s Law 16 1.4. Radiativity of Solid Surfaces 17 1.4.1. Difference Between Real Surfaces and Blackbody Surfaces 17 1.4.2. Graybody 19 1.4.3. Diffuse Surfaces 19 1.5. Thermal Radiation Energy 21 1.5.1. Thermal Radiation Forms 21 1.5.2. Radiosity 22 1.6. Radiative Geometric Con. guration Factors 24 1.6.1. De. nition of the Con. guration Factor 24 1.6.2. Con. guration Factor Properties 27 1.6.3. Con. guration Factor Calculation 29 1.7. Simpli.ed Treatment of Radiative Heat Exchange in Engineering Calculations 41 1.7.1. Simpli. cation Treatment of Radiation Heat Transfer in Common Engineering Calculations 41 1.7.2. Discussion on Simpli. ed Conditions 41 2. Emission and Absorption of Thermal Radiation 2.1. Emission and Absorption Mechanisms 46 2.1.1. Molecular Spectrum Characteristics 46 2.1.2. Absorption and Radiation of Media 47 i 2.2. Radiativity of Absorbing and Scattering Media 49 2.2.1. Absorbing and Scattering Characteristics of Media 49 2.3. Scattering 50 2.4. Absorption and Scattering of Flue Gas 50 2.4.1. Radiation Intensity Characteristics 50 2.4.2. Exchange and Conservation of Radiant Energy 54 2.4.3. Mean Beam Length, Absorptivity, and Emissivity of Media 59 2.4.4. Gas Absorptivity and Emissivity 65 2.4.5. Flue Gas and Flame Emissivity 71 3. Radiation Heat Exchange Between Isothermal Surfaces 3.1. Radiative Heat Exchange Between Surfaces in Transparent Media 76 3.1.1. Radiative Heat Transfer of a Closed System Composed of Two Surfaces 76 3.1.2. Radiation Transfer of a Closed System Composed of Multiple Surfaces 80 3.1.3. Hole Radiative Heat Transfer 82 3.1.4. Radiative Heat Transfer of Hot Surface, Water Wall, and Furnace Wall 86 3.2. Radiative Heat Exchange Between an Isothermal Medium and a Surface 88 3.2.1. Heat Transfer Between a Medium and a Heating Surface 89 3.2.2. Heat Transfer Between a Medium and a Furnace 90 3.2.3. Calculating Radiative Heat Transfer According to Projected Heat 93 3.3. Radiative Heat Exchange Between a Flue Gas and a Heating Surface with Convection 95 4. Heat Transfer in Fluidized Beds 4.1. Fundamental Concepts of Fluidized Beds 101 4.1.1. De. nition and Characteristics of Fluidized Beds 101 4.1.2. Basic CFB Boiler Structure 103 4.1.3. Different Types of CFB Boilers 105 4.1.4. CFB Boiler Characteristics 107 4.2. Convective Heat Transfer in Gas–Solid Flow 112 4.2.1. Two-Phase Flow Heat Transfer Mechanism 114 4.2.2. Factors Impacting Two-Phase Heat Transfer 114 4.2.3. Two-Phase Flow Convective Heat Transfer 118 4.3. Radiative Heat Transfer in Gas–Solid Flow 122 4.4. Heat Transfer Calculation in a Circulating Fluidized Bed 124 4.4.1. In. uence of Heating Surface Size on Heat Transfer 125 4.4.2. CFB Boiler Gas Side Heat Transfer Coef. cient 127 Contents iii 5. Heat Transfer Calculation in Furnaces 5.1. Heat Transfer in Furnaces 132 5.1.1. Processes in the Furnace 132 5.1.2. Classi. cation of Heat Transfer Calculation Methods 133 5.1.3. Furnace Heat Transfer Calculation Equation 134 5.1.4. Flame Temperature 135 5.2. Heat Transfer Calculation in Suspension-Firing Furnaces 139 5.2.1. Gurvich Method 139 5.2.2. Calculation Method Instructions 140 5.2.3. Furnace Heat Transfer Calculation Examples 143 5.3. Heat Transfer Calculation in Grate Furnaces 143 5.3.1. Heat Transfer Calculation in Grate Furnaces in China 143 5.3.2. Heat Transfer Calculation in Grate-Firing Furnaces 149 5.4. Heat Transfer Calculation in Fluidized Bed Furnaces 152 5.4.1. Heat Transfer Calculation in Bubbling Fluidized Bed (BFB) Furnaces 152 5.4.2. CFB Furnace Structure and Characteristics 153 5.4.3. Heat Transfer Calculation in CFB Furnaces 157 5.5. Heat Transfer Calculation in Back-End Heating Surfaces 160 5.5.1. Basic Heat Transfer Equations 161 5.5.2. Heat Transfer Coef. cient 162 5.6. Thermal Calculation of the Boiler 165 5.6.1. Basic De. nitions of Boiler Heating Surfaces 165 5.6.2. Thermal Calculation Methods for Boilers 169 5.6.3. Thermal Calculation According to Different Furnace Types 170 6. Effects of Ash Deposition and Slagging on Heat Transfer 6.1. Ash Deposition and Slagging Processes and Characteristics 173 6.1.1. Deposition and Slagging 173 6.1.2. Formation and Characteristics of Deposition and Slagging 175 6.1.3. Damage of Deposition and Slagging 178 6.1.4. Ash Composition 179 6.2. Effects of Ash Deposition and Slagging on Heat Transfer in Furnaces 179 6.2.1. Heat Transfer Characteristics and Ash Layer Calculation with Slagging 182 6.2.2. Heat Transfer Calculation with Deposition and Slagging 184 6.3. Effects of Ash Deposition and Slagging on Heat Transfer in Convective Heating Surfaces 185 6.3.1. Effects of Severe Ash Deposition and Slagging 185 6.3.2. Basic Heat Transfer Equation for Convective Heating Surfaces 185 6.3.3. Coef. cients Evaluating the Ash Deposition Effect 188 7. Measuring Heat Transfer in the Furnace 7.1. Flame Emissivity Measurement 194 7.1.1. Bichromatic Optical Pyrometer 194 7.1.2. Auxiliary Radiative Resources 196 7.2. Radiative Flux Measurement 197 7.2.1. Conductive Radiation Heat Flux Meter 198 7.2.2. Capacitive Radiation Heat Flux Meter 199 7.2.3. Calorimetric Radiation Heat Flux Meter 200 7.3. Two Other Types of Heat Flux Meter 200 7.3.1. Heat Pipe Heat Flux Meter 201 7.3.2. Measuring Local Heat Transfer Coef. cient in CFB Furnaces 202 Appendix A. Common Physical Constants of Heat Radiation 205 Appendix B. Common Con. guration Factor Calculation Formulas 207 Appendix C. Example of Thermal Calculation of 113.89 kg/s (410 t/h) Ultra-High-Pressure, Coal-Fired Boiler 219 Appendix D. Supplementary Materials 293 References 323 Subject Index 325

炉内传播理论与计算 作者简介

张衍国,教授、博导,《工业加热》编委,全国第四届“发明奖”荣获者。长期致力于劣质燃料的燃烧、余热利用、固体燃料的热转化等技术的开发和应用及节能改造等技术服务,并及时跟踪前沿课题,开发高炉渣干法粒化技术、可燃固体废弃物超临界热处理、生物质碳化、固体燃料微型热发电等技术。同时还致力于研究各种低品位燃料燃烧及热转化过程中的化学反应规律、物流组织和污染控制等。主持并参加了多项973、自然科学基金、科技重大专项和省校合作课题,承担数十项企业研发、应用课题。出版专著《垃圾清洁焚烧发电技术》、《炉内传热原理与计算》和《Theory and Calculation of Heat Transfer in Furnaces》,发表文章百余篇,其中SCI 30余篇、EI收录 60余篇,获授权发明专利30余项

炉内传播理论与计算

http://www.00-edu.com/tushu/kj1/202008/2674255.html十二生肖
十二星座