半导体 超导体 磁性材料 绝缘体 电介质 其他电气材料-材料手册-4 本书特色
卡达雷利主编的《材料手册》第二版提供所有类别的材料的物理和化学性质,是一本简洁的手边工具书。第二版与**版的差别是扩大新的家庭用的材料,但重点是每一类常见的工业材料的性能。《材料手册(4半导体超导体磁性材料绝缘体电介质其他电气材料)》一书内容为原手册第5、6、7、8、9的半导体、超导体、磁性材料、绝缘体、电介质及其他电器材料的介绍。
半导体 超导体 磁性材料 绝缘体 电介质 其他电气材料-材料手册-4 目录
introduction 5 semiconductors 5.1 bated theory of bonding in crystalline solids 5.2 electrical classification of solids 5.3 semiconductor classes 5.3.1 intrinsic or elemental semiconductors 5.3.2 doped extrinsic semiconductors 5.3.3 compound semiconductors 5.3.4 grimm-sommerfeld rule 5.4 concentrations of charge carriers 5.5 transport properties 5.5.1 electromigration 5.5.2 diffusion 5.5.3 hall effect 5.6 physical properties of semiconductors 5.7 industrial applications and uses 5.8 common semiconductors 5.8.1 silicon 5.8.2 germanium 5.8.3 boron 5.8.4 other semiconductors 5.9 semiconductor wafer processing 5.9.1 monocrystal growth 5.9.2 wafer production 5.10 the p-n junction 5.11 further reading 6 superconductors 6.1 description and general properties 6.2 superconductor types 6.2.1 type i superconductors 6.2.2 type ii superconductors 6.2.3 high-critical-temperature superconductors 6.2.4 organic superconductors 6.3 basic theory 6.4 meissner-ochsenfeld effect 6.5 history. 6.6 industrial applications and uses 6.7 further reading 7 magnetic materials 7.1 magnetic physical quantities 7.1.1 magnetic field strength and magnetomotive force 7.1.2 magnetic flux density and magnetic induction. 7.1.3 magnetic flux 7.1.4 magnetic dipole moment 7.1.5 magnetizability, magnetization, and magnetic susceptibility 7.1.6 magnetic force exerted on a material 7.1.7 magnetic force exerted by magnets 7.1.8 magnetic energy density stored 7.1.9 magnetoresistance 7.1.10 magnetostriction 7.1.11 magnetocaloric effect 7.1.12 si and cgs units used in electromagnetism 7.2 classification of magnetic materials 7.2.1 diamagnetic materials 7.2.2 paramagnetic materials 7.2.3 ferromagnetic materials 7.2.4 antiferromagnetic materials 7.2.5 ferrimagnetic materials 7.3 ferromagnetic materials 7.3.1 b-h magnetization curve and hysteresis loop 7.3.2 eddy-current losses 7.3.3 induction heating 7.3.4 soft ferromagnetic materials 7.3.5 hard magnetic materials 7.3.6 magnetic shielding and materials selection 7.4 industrial applications of magnetic materials 7.5 further reading 8 insulators and dielectrics 8.1 physical quantities of dielectrics 8.1.1 permittivity of vacuum 8.1.2 permittivity of a medium 8.1.3 relative permittivity and dielectric constant 8.1.4 capacitance 8.1.5 temperature coefficient of capacitance 8.1.6 charging and discharging a capacitor 8.1.7 capacitance of a parallel-electrode capacitor 8.1.8 capacitance of other capacitor geometries 8.1.9 hectrostatic energy stored in a capacitor 8.1.10 hectric field strength 8.1.11 hectric hux density 8.1.12 microscopic hectric dipole moment 8.1.13 polarizability 8.1.14 macroscopic electric dipole moment 8.1.15 polarization 8.1.16 hectric susceptibility 8.1.17 dielectric breakdown voltage 8.1.18 dielectric absorption 8.1.19 dielectric losses 8.1.20 loss tangent or dissipation factor 8.1.21 dielectric heating 8.2 physical properties of insulators 8.2.1 insulation resistance 8.2.2 volume hectrical resistivity. 8.2.3 temperature coefficient of electrical resistivity 8.2.4 surface hectrical resistivity 8.2.5 leakage current 8.2.6 si and cgs units used in hectricity 8.3 dielectric behavior 8.3.1 hectronic polarization 8.3.2 ionic polarization 8.3.3 dipole orientation 8.3.4 space charge polarization 8.3.5 effect of frequency on polarization 8.3.6 frequency dependence of the dielectric losses 8.4 dielectric breakdown mechanisms 8.4.1 hectronic breakdown or corona mechanism 8.4.2 thermal discharge or thermal mechanism 8.4.3 internal discharge or intrinsic mechanism 8.5 hectrostriction 8.6 piezoelectricity 8.7 ferroelectrics 8.8 aging of ferroelectrics 8.9 classification of industrial dielectrics 8.9.1 class i dielectrics or linear dielectrics 8.9.2 class ii dielectrics or ferroelectrics 8.10 selected properties of insulators and dielectric materials 8.11 further reading 9 miscellaneous hectrical materials 9.1 thermocouple materials 9.1.1 the seebeck effect 9.1.2 thermocouple 9.1.3 properties of common thermocouple materials 9.2 resistors and thermistors 9.2.1 electrical resistivity. 9.2.2 temperature coefficient of electrical resistivity 9.3 electron-emitting materials 9.4 photocathode materials 9.5 secondary emission 9.6 electrolytes 9.7 electrode materials 9.7.1 electrode materials for batteries and fuel cells 9.7.2 intercalation compounds 9.7.3 electrode materials for electrolytic cells 9.7.3.1 industrial cathode materials 9.7.3.1.1 low-carbon steel cathodes 9.7.3.1.2 aluminum cathodes 9.7.3.1.3 titanium cathodes 9.7.3.1.4 zirconium cathodes 9.7.3.1.5 nickel cathodes 9.7.3.1.6 mercury cathode 9.7.3.2 industrial anode materials 9.7.3.2.1 precious-and noble-metal anodes 9.7.3.2.2 lead and lead-alloy anodes 9.7.3.2.3 carbon anodes 9.7.3.2.4 lead dioxide (pbo2) 9.7.3.2.5 manganese dioxide (mno2) 9.7.3.2.6 spinel (ab2o4)- and perovskite (abo3)-type oxides 9.7.3.2.7 ebonex(ti4o7 and ti5o9) 9.7.3.2.8 noble-metal-coated titanium anodes (nmct) 9.7.3.2.9 platinized titanium and niobium anodes (70/30 pt/ir) 9.7.3.2.10 dimensionally stable anodes (dsa) for chlorine evolution 9.7.3.2.11 dimensionally stable anodes (dsa) for oxygen 9.7.3.2.12 synthetic diamond electrodes 9.7.4 electrodes for corrosion protection and control 9.7.4.1 cathodes for anodic protection 9.7.4.2 anodes for cathodic protection 9.7.5 electrode suppliers and manufacturers 9.8 electrochemical galvanic series index
|