零零教育信息网 首页 > 考试 > 数学 > 初中数学 > 有理数定义及分类 > 正文 返回 打印

下列说法正确的是()A.一个有理数不是正数就是负数B.0既不是正数,也不是负数C.存在最小的正有理数D.0的倒数是0-数学

[db:作者]  2019-02-09 00:00:00  互联网

题文

下列说法正确的是(  )
A.一个有理数不是正数就是负数
B.0既不是正数,也不是负数
C.存在最小的正有理数
D.0的倒数是0
题型:单选题  难度:偏易

答案

有理数包括正数、负数和0,A错误;
0既不是正数,也不是负数,这是规定,B正确;
正有理数既没有最小的也没有最大的,C错误;
0没有倒数,D错误;
故选B.

据专家权威分析,试题“下列说法正确的是()A.一个有理数不是正数就是负数B.0既不是正数,..”主要考查你对  有理数定义及分类,倒数  等考点的理解。关于这些考点的“档案”如下:

有理数定义及分类倒数

考点名称:有理数定义及分类

  • 有理数的定义:
    有理数是整数和分数的统称,一切有理数都可以化成分数的形式。

  • 有理数的分类:
    (1)按有理数的定义:
                                  正整数 
                     整数{     零 
                                  负整数
    有理数{     
                                正分数 
                    分数{
                                负分数
     

    (2)按有理数的性质分类: 
                               正整数  
                   正数{ 
                               正分数
    有理数{  零
                               负整数 
                   负数{
                               负分数

考点名称:倒数

  • 倒数的定义:
    如果两个数的乘积等于1,那么这两个数就叫做互为倒数。

  • 倒数性质
    (1)若a、b互为倒数,则ab=1,或,反之也成立;
    (2)0没有倒数;
    (3)乘积为-1的两个数互为负倒数,即ab=-1,则ab互为负倒数,反之也成立。

    倒数的特点
    一个正实数(1除外)加上它的倒数 一定大于2。
    理由:a/b,b/a为倒数当a>b时a/b一定大于1,可写为1+(a-b)/b。因为:
       b/a+(a-b)/a
    =b×b/a×b+(a÷b-b×b)/ab
    =(a×a-b×b+b×b)/ab
    =a×a/a×b,
    又因为a>b,
    所以a·a>a·b,
    所以a·a/a·b>1,
    所以1+(a-b)/b+a·a/a·b>2,
    所以一个正实数加上它的倒数一定大于2。
    当b>a时也一样。
    同理可证,一个负实数(-1除外)加上它的倒数一定小于-2。

  • 倒数的求法:
    1.求一个分数的倒数,例如3/4,我们只须把3/4这个分数的分子和分母交换位置,即得3/4的倒数为4/3。

    2.求一个整数的倒数,只须把这个整数看成是分母为1的分数,然后再按求分数倒数的方法即可得到。
    如12,即12/1,再把12/1这个分数的分子和分母交换位置,把分子做分母,分母做分子,则有1/12。 即12倒数是1/12。
    说明:倒数是本身的数是1和-1。(0没有倒数)

    把0.25化成分数,即1/4
    再把1/4这个分数的分子和分母交换位置,把原来的分子做分母,原来的分母做分子.则是4/1
    再把4/1化成整数,即4
    所以0.25是4的倒数。也可以说4是0.25的倒数
    也可以用1去除以这个数,例如0.25
    1/0.25等于4
    所以0.25的倒数4.
    因为乘积是1的两个数互为倒数。
    分数、整数也都使不完整用这种规律。



http://www.00-edu.com/ks/shuxue/2/1/2019-02-09/540959.html十二生肖
十二星座