零零教育信息网 首页 > 考试 > 数学 > 初中数学 > 有理数定义及分类 > 正文 返回 打印

已知p,q都是质数,且使得关于x的二次方程x2-(8p-10q)x+5pq=0至少有一个正整数根,求所有的质数对(p,q).-数学

[db:作者]  2019-02-09 00:00:00  互联网

题文

已知p,q都是质数,且使得关于x的二次方程x2-(8p-10q)x+5pq=0至少有一个正整数根,求所有的质数对(p,q).
题型:解答题  难度:中档

答案

根据一元二次方程根与系数的关系可得:x1+x2=8p-10q,
x1?x2=5pq,
质数都是正整数.所以5pq肯定是正整数,
有一根是正整数,x1x2肯定都是正整数,
可以知道有几种可能,
x1=5 x2=pq;x1=5p x2=q;x1=5q x2=p;x1=1,x2=5pq;
将x1,x2代入 x1+x2=8p-10q,
5+pq=8p-10q,(1)
p(q-8)+10(q-8)+80+5=0,
(q-8)(p+10)=-85=-5×17=-1×85,
q=3,p=7,或q=7,p=75(舍去),
5p+q=8p-10q,11q=3p,(2)
p=11,q=3,
5q+p=8p-10q,15q=7p,(3)
p=15,q=7(舍去),
5pq+1=8p-10q,(4)
5q(p+2)-8(p+2)+16+1=0,
(p+2)(5q-8)=-17,
p=15,q=
7
5
(舍去),p=-1,q=-
9
5
(舍去),q=
9
5
,p=-19(舍去),q=5,p=-3(舍去),
最后p=11,q=3,
或p=7,q=3.
故存在两对质数(11,3)和(7,3).

据专家权威分析,试题“已知p,q都是质数,且使得关于x的二次方程x2-(8p-10q)x+5pq=0至少..”主要考查你对  有理数定义及分类,一元二次方程根与系数的关系  等考点的理解。关于这些考点的“档案”如下:

有理数定义及分类一元二次方程根与系数的关系

考点名称:有理数定义及分类

  • 有理数的定义:
    有理数是整数和分数的统称,一切有理数都可以化成分数的形式。

  • 有理数的分类:
    (1)按有理数的定义:
                                  正整数 
                     整数{     零 
                                  负整数
    有理数{     
                                正分数 
                    分数{
                                负分数
     

    (2)按有理数的性质分类: 
                               正整数  
                   正数{ 
                               正分数
    有理数{  零
                               负整数 
                   负数{
                               负分数

考点名称:一元二次方程根与系数的关系

  • 一元二次方程根与系数的关系:
    如果方程 的两个实数根是那么
    也就是说,对于任何一个有实数根的一元二次方程,两根之和等于方程的一次项系数除以二次项系数所得的商的相反数;两根之积等于常数项除以二次项系数所得的商。

  • 一元二次方程根与系数关系的推论:
    1.如果方程x2+px+q=0的两个根是x1、x2,那么x1+x2=-p , x1`x2=q
    2.以两个数x1、x2为根的一元二次方程(二次项系数为1)是x2-(x1+x2)x+x1x2=0
    提示:
    ①运用根与系数的关系和运用根的判别式一样,都必须先把方程化为一般形式,以便正确确定a、b、c的值。
    ②有推论1可知,对于二次项系数为1的一元二次方程,他的两根之和等于一次项系数的相反数,两根之积等于常数项。
    ③推论2可以看作推论1的逆定理,利用推论2可以直接求出以两个数x1、x2为根的一元二次方程(二次项系数是1)是x2-(x1+x2)x+x1x2=0



http://www.00-edu.com/ks/shuxue/2/1/2019-02-09/541482.html十二生肖
十二星座