题文
答案
据专家权威分析,试题“回答问题:(1)在数轴上表示出0,-1.3,-2,1;(2)将(1)中各数用“..”主要考查你对 数轴,相反数,绝对值,比较有理数的大小 等考点的理解。关于这些考点的“档案”如下:
数轴相反数绝对值比较有理数的大小
考点名称:数轴
数轴的应用范畴:符号相反的两个数互为相反数,零的相反数是零。(如2的相反—2)在数轴上离开原点的距离就叫做这个数的绝对值。一个正数的绝对值是它本身,一个负数的相反数是它的正数,0的绝对值是0。
考点名称:相反数
相反数的定义:像2和-2,5和-5这样,只有符号不同的两个数叫做互为相反数。相反数的几何意义:在数轴上到原点距离相等的两个点表示的两个数叫做互为相反数。相反数的代数意义:如果两个数的和为零,其中一个数是另一个数的相反数,这两个数称为互为相反数。
相反数的特性:1、若a,b互为相反数,则a+b=0; 反之,若a+b=0,则a,b互为相反数;2、在数轴上,互为相反数(0除外)的两个点位于原点的两旁,并且关于原点对称; 3、此时,b的相反数为﹣b=﹣(﹣a)=a,那么我们就说“相反数具有互称性”。4、相反数的规律:正数的相反数是负数,负数的相反数是正数,0的相反数是0。5、相反数的表示方法:a的相反数是-a,-a的相反数是a;a-b的相反数是b-a,b-a的相反数是a-b;a+b的相反数是-(a+b),即-a-b。
考点名称:绝对值
绝对值的有关性质:①任何有理数的绝对值都是大于或等于0的数,这是绝对值的非负性; ②绝对值等于0的数只有一个,就是0; ③绝对值等于同一个正数的数有两个,这两个数互为相反数; ④互为相反数的两个数的绝对值相等。 绝对值的化简:绝对值意思是值一定为正值,按照“符号相同为正,符号相异为负”的原则来去绝对值符号。①绝对值符号里面为负,在去掉绝对值时必须要加一个负的符号老确保整个值为正值,也就是当:│a│=a (a为正值,即a≥0 时);│a│=-a (a为负值,即a≤0 时)②整数就找到这两个数的相同因数;③小数就把这两个数同时扩大相同倍数成为整数,一般都是扩大10、100倍;④分数的话就相除,得数是分数就是分子:分母,要是得数是整数,就这个数比1。
考点名称:比较有理数的大小