题文
[ ]
答案
据专家权威分析,试题“若a、b互为相反数,则在①a+b=0,②|a|=|b|,③a2=b2,④a3=b3,⑤ab=..”主要考查你对 相反数,等式的性质 等考点的理解。关于这些考点的“档案”如下:
相反数等式的性质
考点名称:相反数
相反数的定义:像2和-2,5和-5这样,只有符号不同的两个数叫做互为相反数。相反数的几何意义:在数轴上到原点距离相等的两个点表示的两个数叫做互为相反数。相反数的代数意义:如果两个数的和为零,其中一个数是另一个数的相反数,这两个数称为互为相反数。
相反数的特性:1、若a,b互为相反数,则a+b=0; 反之,若a+b=0,则a,b互为相反数;2、在数轴上,互为相反数(0除外)的两个点位于原点的两旁,并且关于原点对称; 3、此时,b的相反数为﹣b=﹣(﹣a)=a,那么我们就说“相反数具有互称性”。4、相反数的规律:正数的相反数是负数,负数的相反数是正数,0的相反数是0。5、相反数的表示方法:a的相反数是-a,-a的相反数是a;a-b的相反数是b-a,b-a的相反数是a-b;a+b的相反数是-(a+b),即-a-b。
考点名称:等式的性质
拓展1:等式两边同时被一个数或式子减,结果仍相等。如果a=b,那么c-a=c-b2:等式两边取相反数,结果仍相等。如果a=b,那么-a=-b3:等式两边不等于0时,被同一个数或式子除,结果仍相等。如果a=b≠0,那么c/a=c/b4:等式两边不等于0时,两边取倒数,结果仍相等。如果a=b≠0,那么1/a=1/b