题文
答案
据专家权威分析,试题“已知a、b互为相反数,c、d互为倒数,m的绝对值为2,求(a+b)(a-b)..”主要考查你对 相反数,绝对值,倒数,完全平方公式 等考点的理解。关于这些考点的“档案”如下:
相反数绝对值倒数完全平方公式
考点名称:相反数
相反数的定义:像2和-2,5和-5这样,只有符号不同的两个数叫做互为相反数。相反数的几何意义:在数轴上到原点距离相等的两个点表示的两个数叫做互为相反数。相反数的代数意义:如果两个数的和为零,其中一个数是另一个数的相反数,这两个数称为互为相反数。
相反数的特性:1、若a,b互为相反数,则a+b=0; 反之,若a+b=0,则a,b互为相反数;2、在数轴上,互为相反数(0除外)的两个点位于原点的两旁,并且关于原点对称; 3、此时,b的相反数为﹣b=﹣(﹣a)=a,那么我们就说“相反数具有互称性”。4、相反数的规律:正数的相反数是负数,负数的相反数是正数,0的相反数是0。5、相反数的表示方法:a的相反数是-a,-a的相反数是a;a-b的相反数是b-a,b-a的相反数是a-b;a+b的相反数是-(a+b),即-a-b。
考点名称:绝对值
绝对值的有关性质:①任何有理数的绝对值都是大于或等于0的数,这是绝对值的非负性; ②绝对值等于0的数只有一个,就是0; ③绝对值等于同一个正数的数有两个,这两个数互为相反数; ④互为相反数的两个数的绝对值相等。 绝对值的化简:绝对值意思是值一定为正值,按照“符号相同为正,符号相异为负”的原则来去绝对值符号。①绝对值符号里面为负,在去掉绝对值时必须要加一个负的符号老确保整个值为正值,也就是当:│a│=a (a为正值,即a≥0 时);│a│=-a (a为负值,即a≤0 时)②整数就找到这两个数的相同因数;③小数就把这两个数同时扩大相同倍数成为整数,一般都是扩大10、100倍;④分数的话就相除,得数是分数就是分子:分母,要是得数是整数,就这个数比1。
考点名称:倒数
考点名称:完全平方公式
(1)公式中的a、b可以是单项式,也就可以是多项式。(2)不能直接应用公式的,要善于转化变形,运用公式。该公式是进行代数运算与变形的重要的知识基础,是因式分解中常用到的公式。该知识点重点是对完全平方公式的熟记及应用。难点是对公式特征的理解(如对公式中积的一次项系数的理解)。
结构特征:1.左边是两个相同的二项式相乘,右边是三项式,是左边二项式中两项的平方和,加上或减去这两项乘积的2倍;2.左边两项符号相同时,右边各项全用“+”号连接;左边两项符号相反时,右边平方项用“+”号连接后再“-”两项乘积的2倍(注:这里说项时未包括其符号在内);3..公式中的字母可以表示具体的数(正数或负数),也可以表示单项式或多项式等数学式.记忆口诀:首平方,尾平方,2倍首尾。
使用误解:①漏下了一次项;②混淆公式;③运算结果中符号错误;④变式应用难于掌握。
注意事项:1、左边是一个二项式的完全平方。2、右边是二项平方和,加上(或减去)这两项乘积的二倍,a和b可是数,单项式,多项式。3、不论是还是,最后一项都是加号,不要因为前面的符号而理所当然的以为下一个符号。
完全平方公式的基本变形:(一)、变符号例:运用完全平方公式计算:(1)(-4x+3y)2(2)(-a-b)2分析:本例改变了公式中a、b的符号,以第二小题为例,处理该问题最简单的方法是将这个式子中的(-a)看成原来公式中的a,将(-b)看成原来公式中的b,即可直接套用公式计算。解答:(1)16x2-24xy+9y2(2)a2+2ab+b2
(二)、变项数:例:计算:(3a+2b+c)2分析:完全平方公式的左边是两个相同的二项式相乘,而本例中出现了三项,故应考虑将其中两项结合运用整体思想看成一项,从而化解矛盾。所以在运用公式时,(3a+2b+c)2可先变形为[(3a+2b)+c]2,直接套用公式计算。解答:9a2+12ab+6ac+4b2+4bc+c2
(三)、变结构例:运用公式计算:(1)(x+y)(2x+2y)(2)(a+b)(-a-b)(3)(a-b)(b-a)分析;本例中所给的均是二项式乘以二项式,表面看外观结构不符合公式特征,但仔细观察易发现,只要将其中一个因式作适当变形就可以了,即(1)(x+y)(2x+2y)=2(x+y)2(2) (a+b)(-a-b)=-(a+b)2(3) (a-b)(b-a)=-(a-b)2