零零教育信息网 首页 > 考试 > 数学 > 初中数学 > 相反数 > 正文 返回 打印

已知a、b互为相反数,c、d互为倒数,m的绝对值为2,求(a+b)(a-b)+(cd)-1÷(1-2m+m2)的值。-八年级数学

[db:作者]  2019-02-11 00:00:00  互联网

题文

已知a、b互为相反数,c、d互为倒数,m的绝对值为2,求(a+b)(a-b)+(cd)-1÷(1-2m+m2)的值。
题型:计算题  难度:中档

答案

解:1或

据专家权威分析,试题“已知a、b互为相反数,c、d互为倒数,m的绝对值为2,求(a+b)(a-b)..”主要考查你对  相反数,绝对值,倒数,完全平方公式  等考点的理解。关于这些考点的“档案”如下:

相反数绝对值倒数完全平方公式

考点名称:相反数

  • 相反数的定义:
    像2和-2,5和-5这样,只有符号不同的两个数叫做互为相反数。
    相反数的几何意义:在数轴上到原点距离相等的两个点表示的两个数叫做互为相反数。
    相反数的代数意义:如果两个数的和为零,其中一个数是另一个数的相反数,这两个数称为互为相反数。

  • 相反数的特性:
    1、若a,b互为相反数,则a+b=0; 反之,若a+b=0,则a,b互为相反数;
    2、在数轴上,互为相反数(0除外)的两个点位于原点的两旁,并且关于原点对称;
    3、此时,b的相反数为﹣b=﹣(﹣a)=a,那么我们就说“相反数具有互称性”。
    4、相反数的规律:正数的相反数是负数,负数的相反数是正数,0的相反数是0。
    5、相反数的表示方法:a的相反数是-a,-a的相反数是a;a-b的相反数是b-a,b-a的相反数是a-b;a+b的相反数是-(a+b),即-a-b。


  •  

  • (互为)相反数的代数意义:
    1、只有符号不同的两个数称互为相反数。a和-a是一对互为相反数,a叫做-a的相反数,-a叫做a的相反数。注意:-a不一定是负数。a不一定是正数。(a不等于0)
    2、若两个实数a和b满足b=﹣a。我们就说b是a的相反数。
    3、两个互为相反数的实数a和b必满足a+b=0。也可以说实数a和b满足a+b=0,则这两个实数a,b互为相反数。

    相反数的判别:
    我们在利用相反数的概念进行化简时,很多情况下,把括号里的部分看成一个整体(即想象成一个数a),问题就容易解决。因此要求一个数的相反数,只要在这个数前面叫上“-”,再化简即可。

    多重符号的化简:
    1、在一个数前面添加一个“+”好,所得的数与原数相同。
    2、在一个数前面添加一个“-”号,所得的数就成为原数的相反数。
    3、对于有三个火三个以上符号的数的化简,首先要注意,一个数前面不管有多少个“+”号,可以把正号去掉,其次要看“-”号的个数,当“-”号的个数为偶数个时,结果取正,当“-”号的个数为奇数个时,结果取“-”号。

考点名称:绝对值

  • 绝对值定义:
    在数轴上,表示一个数的点到原点的距离叫做这个数的绝对值。
    绝对值用“||”来表示。
    在数轴上,表示一个数a的点到数b的点之间的距离的值,叫做a-b的绝对值,记作|a-b|。

  • 绝对值的意义:
    1、几何的意义:
    在数轴上,一个数到原点的距离叫做该数的绝对值.如:5指在数轴上表示数5的点与原点的距离,这个距离是5,所以5的绝对值是5。

    2、代数的意义:
    非负数(正数和0,)
    非负数的绝对值是它本身,非正数的绝对值是它的相反数。
    互为相反数的两个数的绝对值相等。
    a的绝对值用“|a |”表示.读作“a的绝对值”。
    实数a的绝对值永远是非负数,即|a |≥0。
    互为相反数的两个数的绝对值相等,即|-a|=|a|。
    若a为正数,则满足|x|=a的x有两个值±a,如|x|=3,,则x=±3.

  • 绝对值的有关性质:
    ①任何有理数的绝对值都是大于或等于0的数,这是绝对值的非负性;
    ②绝对值等于0的数只有一个,就是0;
    ③绝对值等于同一个正数的数有两个,这两个数互为相反数;
    ④互为相反数的两个数的绝对值相等。

    绝对值的化简:
    绝对值意思是值一定为正值,按照“符号相同为正,符号相异为负”的原则来去绝对值符号。
    ①绝对值符号里面为负,在去掉绝对值时必须要加一个负的符号老确保整个值为正值,也就是当:
    │a│=a (a为正值,即a≥0 时);│a│=-a (a为负值,即a≤0 时)
    ②整数就找到这两个数的相同因数;
    ③小数就把这两个数同时扩大相同倍数成为整数,一般都是扩大10、100倍;
    ④分数的话就相除,得数是分数就是分子:分母,要是得数是整数,就这个数比1。

考点名称:倒数

  • 倒数的定义:
    如果两个数的乘积等于1,那么这两个数就叫做互为倒数。

  • 倒数性质
    (1)若a、b互为倒数,则ab=1,或,反之也成立;
    (2)0没有倒数;
    (3)乘积为-1的两个数互为负倒数,即ab=-1,则ab互为负倒数,反之也成立。

    倒数的特点
    一个正实数(1除外)加上它的倒数 一定大于2。
    理由:a/b,b/a为倒数当a>b时a/b一定大于1,可写为1+(a-b)/b。因为:
       b/a+(a-b)/a
    =b×b/a×b+(a÷b-b×b)/ab
    =(a×a-b×b+b×b)/ab
    =a×a/a×b,
    又因为a>b,
    所以a·a>a·b,
    所以a·a/a·b>1,
    所以1+(a-b)/b+a·a/a·b>2,
    所以一个正实数加上它的倒数一定大于2。
    当b>a时也一样。
    同理可证,一个负实数(-1除外)加上它的倒数一定小于-2。

  • 倒数的求法:
    1.求一个分数的倒数,例如3/4,我们只须把3/4这个分数的分子和分母交换位置,即得3/4的倒数为4/3。

    2.求一个整数的倒数,只须把这个整数看成是分母为1的分数,然后再按求分数倒数的方法即可得到。
    如12,即12/1,再把12/1这个分数的分子和分母交换位置,把分子做分母,分母做分子,则有1/12。 即12倒数是1/12。
    说明:倒数是本身的数是1和-1。(0没有倒数)

    把0.25化成分数,即1/4
    再把1/4这个分数的分子和分母交换位置,把原来的分子做分母,原来的分母做分子.则是4/1
    再把4/1化成整数,即4
    所以0.25是4的倒数。也可以说4是0.25的倒数
    也可以用1去除以这个数,例如0.25
    1/0.25等于4
    所以0.25的倒数4.
    因为乘积是1的两个数互为倒数。
    分数、整数也都使不完整用这种规律。

考点名称:完全平方公式

  • 完全平方公式:
    两数和(或差)的平方,等于它们的平方和,加上(或减去)它们的积的2倍。叫做完全平方公式.为了区别,我们把前者叫做两数和的完全平方公式,后者叫做两数差的完全平方公式。
    (a+b)2=a2+2ab+b2
    (a-b)2=a2-2ab+b2

    (1)公式中的a、b可以是单项式,也就可以是多项式。
    (2)不能直接应用公式的,要善于转化变形,运用公式。
    该公式是进行代数运算与变形的重要的知识基础,是因式分解中常用到的公式。该知识点重点是对完全平方公式的熟记及应用。难点是对公式特征的理解(如对公式中积的一次项系数的理解)。

  • 结构特征:
    1.左边是两个相同的二项式相乘,右边是三项式,是左边二项式中两项的平方和,加上或减去这两项乘积的2倍;
    2.左边两项符号相同时,右边各项全用“+”号连接;
    左边两项符号相反时,右边平方项用“+”号连接后再“-”两项乘积的2倍(注:这里说项时未包括其符号在内);
    3..公式中的字母可以表示具体的数(正数或负数),也可以表示单项式或多项式等数学式.

    记忆口诀:首平方,尾平方,2倍首尾。

  • 使用误解:
    ①漏下了一次项;
    ②混淆公式;
    ③运算结果中符号错误;
    ④变式应用难于掌握。

    注意事项:
    1、左边是一个二项式的完全平方。
    2、右边是二项平方和,加上(或减去)这两项乘积的二倍,a和b可是数,单项式,多项式。
    3、不论是还是,最后一项都是加号,不要因为前面的符号而理所当然的以为下一个符号。

  • 完全平方公式的基本变形:
    (一)、变符号
    例:运用完全平方公式计算:
    (1)(-4x+3y)2
    (2)(-a-b)2
    分析:本例改变了公式中a、b的符号,以第二小题为例,处理该问题最简单的方法是将这个式子中的(-a)看成原来公式中的a,将(-b)看成原来公式中的b,即可直接套用公式计算。
    解答:
    (1)16x2-24xy+9y2
    (2)a2+2ab+b2

    (二)、变项数:
    例:计算:(3a+2b+c)2
    分析:完全平方公式的左边是两个相同的二项式相乘,而本例中出现了三项,故应考虑将其中两项结合运用整体思想看成一项,从而化解矛盾。所以在运用公式时,(3a+2b+c)2可先变形为[(3a+2b)+c]2,直接套用公式计算。
    解答:9a2+12ab+6ac+4b2+4bc+c2

    (三)、变结构
    例:运用公式计算:
    (1)(x+y)(2x+2y)
    (2)(a+b)(-a-b)
    (3)(a-b)(b-a)
    分析;本例中所给的均是二项式乘以二项式,表面看外观结构不符合公式特征,但仔细观察易发现,只要将其中一个因式作适当变形就可以了,即
    (1)(x+y)(2x+2y)=2(x+y)2
    (2) (a+b)(-a-b)=-(a+b)2
    (3) (a-b)(b-a)=-(a-b)2



http://www.00-edu.com/ks/shuxue/2/4/2019-02-11/573823.html十二生肖
十二星座