题文
答案
据专家权威分析,试题“如果a>0,b<0,且a+b<0,那么下列式子正确的是()A.-b<-a<b<aB.b<..”主要考查你对 相反数,比较有理数的大小,有理数加法,不等式的性质 等考点的理解。关于这些考点的“档案”如下:
相反数比较有理数的大小有理数加法不等式的性质
考点名称:相反数
相反数的定义:像2和-2,5和-5这样,只有符号不同的两个数叫做互为相反数。相反数的几何意义:在数轴上到原点距离相等的两个点表示的两个数叫做互为相反数。相反数的代数意义:如果两个数的和为零,其中一个数是另一个数的相反数,这两个数称为互为相反数。
相反数的特性:1、若a,b互为相反数,则a+b=0; 反之,若a+b=0,则a,b互为相反数;2、在数轴上,互为相反数(0除外)的两个点位于原点的两旁,并且关于原点对称; 3、此时,b的相反数为﹣b=﹣(﹣a)=a,那么我们就说“相反数具有互称性”。4、相反数的规律:正数的相反数是负数,负数的相反数是正数,0的相反数是0。5、相反数的表示方法:a的相反数是-a,-a的相反数是a;a-b的相反数是b-a,b-a的相反数是a-b;a+b的相反数是-(a+b),即-a-b。
考点名称:比较有理数的大小
考点名称:有理数加法
有理数的加法法则:(1)同号两数相加,取相同的符号,并把绝对值相加;(2)绝对值不等的异号两数相加,取绝对值较大数的符号,并用较大的绝对值减去较小的绝对值;(3)互为相反的两个数相加得0;(4)一个数同0相加,仍得这个数。有理数加法的运算律:(1)加法的交换律 :a+b=b+a;(2)加法的结合律:( a+b ) +c = a + (b +c)。
几个有理数相加常用方法:①.运用加法运算律把同号的加数相加,再把异号的加数相加;②.应用运算律把可以凑整的加数相加;③.运用运算律把互为相反数的加数相加。用加法的运算律进行简便运算的基本思路:①先把互为相反数的数相加;②把同分母的分数先相加;③把符号相同的数先相加;④把相加得整数的数先相加。注意事项:有理数的加法与小学的加法有理数的加法与小学的加法大有不同,小学的加法不涉及到符号的问题,而有理数的加法运算总是涉及到两个问题:一是确定结果的符号;二是求结果的绝对值。在进行有理数加法运算时,首先判断两个加数的符号:是同号还是异号,是否有0,从而确定用那一条法则。在应用过程中,一定要牢记“先符号,后绝对值”,熟练以后就不会出错了。多个有理数的加法,可以从左向右计算,也可以用加法的运算定律计算,但是在下笔前一定要思考好,哪一个要用定律哪一个要从左往右计算。记忆要点:同号相加不变,异号相加变减。欲问符号怎么定,绝对值大号选。
考点名称:不等式的性质
不等式的性质:①如果x>y,那么y<x;如果y<x,那么x>y;(对称性)②如果x>y,y>z;那么x>z;(传递性)③如果x>y,而z为任意实数或整式,那么x+z>y+z;(加法原则,或叫同向不等式可加性)④ 如果x>y,z>0,那么xz>yz;如果x>y,z<0,那么xz<yz;(乘法原则)⑤如果x>y,z>0,那么x÷z>y÷z;如果x>y,z<0,那么x÷z<y÷z;⑥如果x>y,m>n,那么x+m>y+n;(充分不必要条件)⑦如果x>y>0,m>n>0,那么xm>yn;⑧如果x>y>0,那么x的n次幂>y的n次幂(n为正数),x的n次幂<y的n次幂(n为负数)或者说,不等式的基本性质有:①对称性;②传递性:③加法单调性:即同向不等式可加性:④乘法单调性:⑤同向正值不等式可乘性:⑥正值不等式可乘方:⑦正值不等式可开方:⑧倒数法则。
原理:①不等式F(x)< G(x)与不等式 G(x)>F(x)同解。②如果不等式F(x) < G(x)的定义域被解析式H( x )的定义域所包含,那么不等式 F(x)<G(x)与不等式F(x)+H(x)<G(x)+H(x)同解。③如果不等式F(x)<G(x) 的定义域被解析式H(x)的定义域所包含,并且H(x)>0,那么不等式F(x)<G(x)与不等式H(x)F(x)<H( x )G(x) 同解;如果H(x)<0,那么不等式F(x)<G(x)与不等式H (x)F(x)>H(x)G(x)同解。④不等式F(x)G(x)>0与不等式同解;不等式F(x)G(x)<0与不等式同解。