题文
答案
据专家权威分析,试题“在三角形中,三边长、、满足,那么此三角形为[]A.等边三角形B.等..”主要考查你对 绝对值,有理数的乘方,勾股定理的逆定理 等考点的理解。关于这些考点的“档案”如下:
绝对值有理数的乘方勾股定理的逆定理
考点名称:绝对值
绝对值的有关性质:①任何有理数的绝对值都是大于或等于0的数,这是绝对值的非负性; ②绝对值等于0的数只有一个,就是0; ③绝对值等于同一个正数的数有两个,这两个数互为相反数; ④互为相反数的两个数的绝对值相等。 绝对值的化简:绝对值意思是值一定为正值,按照“符号相同为正,符号相异为负”的原则来去绝对值符号。①绝对值符号里面为负,在去掉绝对值时必须要加一个负的符号老确保整个值为正值,也就是当:│a│=a (a为正值,即a≥0 时);│a│=-a (a为负值,即a≤0 时)②整数就找到这两个数的相同因数;③小数就把这两个数同时扩大相同倍数成为整数,一般都是扩大10、100倍;④分数的话就相除,得数是分数就是分子:分母,要是得数是整数,就这个数比1。
考点名称:有理数的乘方
考点名称:勾股定理的逆定理
勾股定理的逆定理:如果三角形的三边长a,b,c满足,那么这个三角形是直角三角形。 勾股定理的逆定理是判断三角形为锐角或钝角的一个简单的方法。若c为最长边,且a2+b2=c2,则△ABC是直角三角形。如果a2+b2>c2,则△ABC是锐角三角形。如果a2+b2<c2,则△ABC是钝角三角形。由于余弦定理是由勾股定理推出的,故可以用来证明其逆定理而不算循环论证。勾股定理的逆定理是判定三角形是不是直角三角形的重要方法。