零零教育信息网 首页 > 考试 > 数学 > 初中数学 > 绝对值 > 正文 返回 打印

|x-5|-|x+2|<1(利用“零点”分段法求解)-数学

[db:作者]  2019-02-12 00:00:00  零零社区

题文

|x-5|-|x+2|<1(利用“零点”分段法求解)
题型:解答题  难度:中档

答案

当x<-2时,-(x-5)+(x+2)<1,7<1,此时不等式无解
当-2≤x<5时,-(x-5)-(x+2)<1,x>1,此时不等式解集为1<x<5
当x≥5时,(x-5)-(x+2)<1,-7<1,此时不等式解集为x≥5
综上所述,不等式解集为x>1

据专家权威分析,试题“|x-5|-|x+2|<1(利用“零点”分段法求解)-数学-”主要考查你对  绝对值,一元一次不等式的解法  等考点的理解。关于这些考点的“档案”如下:

绝对值一元一次不等式的解法

考点名称:绝对值

  • 绝对值定义:
    在数轴上,表示一个数的点到原点的距离叫做这个数的绝对值。
    绝对值用“||”来表示。
    在数轴上,表示一个数a的点到数b的点之间的距离的值,叫做a-b的绝对值,记作|a-b|。

  • 绝对值的意义:
    1、几何的意义:
    在数轴上,一个数到原点的距离叫做该数的绝对值.如:5指在数轴上表示数5的点与原点的距离,这个距离是5,所以5的绝对值是5。

    2、代数的意义:
    非负数(正数和0,)
    非负数的绝对值是它本身,非正数的绝对值是它的相反数。
    互为相反数的两个数的绝对值相等。
    a的绝对值用“|a |”表示.读作“a的绝对值”。
    实数a的绝对值永远是非负数,即|a |≥0。
    互为相反数的两个数的绝对值相等,即|-a|=|a|。
    若a为正数,则满足|x|=a的x有两个值±a,如|x|=3,,则x=±3.

  • 绝对值的有关性质:
    ①任何有理数的绝对值都是大于或等于0的数,这是绝对值的非负性;
    ②绝对值等于0的数只有一个,就是0;
    ③绝对值等于同一个正数的数有两个,这两个数互为相反数;
    ④互为相反数的两个数的绝对值相等。

    绝对值的化简:
    绝对值意思是值一定为正值,按照“符号相同为正,符号相异为负”的原则来去绝对值符号。
    ①绝对值符号里面为负,在去掉绝对值时必须要加一个负的符号老确保整个值为正值,也就是当:
    │a│=a (a为正值,即a≥0 时);│a│=-a (a为负值,即a≤0 时)
    ②整数就找到这两个数的相同因数;
    ③小数就把这两个数同时扩大相同倍数成为整数,一般都是扩大10、100倍;
    ④分数的话就相除,得数是分数就是分子:分母,要是得数是整数,就这个数比1。

考点名称:一元一次不等式的解法

  • 一元一次不等式的解集:
    一个有未知数的不等式的所有解,组成这个不等式的解集。例如﹕
    不等式x-5≤-1的解集为x≤4;
    不等式x﹥0的解集是所有正实数。

    求不等式解集的过程叫做解不等式。
    将不等式化为ax>b的形式
    (1)若a>0,则解集为x>b/a
    (2)若a<0,则解集为x<b/a

    一元一次不等式的特殊解:
    不等式的解集一般是一个取值范围,但有时需要求未知数的某些特殊解,如求正数解、整数解、最大整数解等,解答这类问题关键是明确解的特征。

  • 不等式的解与解集:
    不等式成立的未知数的值叫做不等式的解。如x=1是x+2>1的解
    ①不等式的解是指某一范围内的某个数,用它来代替不等式中的未知数,不等式成立。
    ②要判断某个未知数的值是不是不等式的解,可直接将该值代入等式的左、右两边,看不等式是否成立,若成立,则是;否则不是。
    ③一般地,一个不等式的解不止一个,往往有无数个,如所有大于3的数都是x>3的解,但也存在特殊情况,如|x|≦0,就只有一个解,为x=0

    不等式的解集和不等式的解是两个不同的概念。
    ①不等式的解集一般是一个取值范围,在这个范围内的每一个数值都是不等式的一个解,不等式一般有无数个解。
    ②不等式的解集包含两方面的意思:
    解集中的任何一个数值,都能使不等式成立;解集外的任何一个数值,都不能使不等式成立。(即不等式不成立)
    ③不等式的解集可以在数轴上直观的表示出来,如不等式x-1<2的解集是x<3,可以用数轴上表示3的点左边部分来表示,在数轴上表示3的点的位置上画空心圆圈,表示不包括这一点。

  • 一元一次不等式的解法
    解一元一次不等式与解一元一次方程的方法步骤类似,只是在利用不等式基本性质3对不等式进行变形时,要改变不等式的符号。
    有两种解题思路:
    (1)可以利用不等式的基本性质,设法将未知数保留在不等式的一边,其他项在另一边;
    (2)采用解一元一次方程的解题步骤:去分母、去括号、移项、合并同类项、系数化为1等步骤。 

    解一元一次不等式的一般顺序:
    (1)去分母 (运用不等式性质2、3)   
    (2)去括号   
    (3)移项 (运用不等式性质1)   
    (4)合并同类项。   
    (5)将未知数的系数化为1 (运用不等式性质2、3)   
    (6)有些时候需要在数轴上表示不等式的解集
     
    不等式解集的表示方法:
    (1) 用不等式表示:一般的,一个含未知数的不等式有无数个解,其解集是一个范围,这个范围可用最简单的不等式表达出来。
    例如:x-1≤2的解集是x≤3。   
    (2) 用数轴表示:不等式的解集可以在数轴上直观地表示出来,形象地说明不等式有无限多个解。
    用数轴表示不等式的解集要注意两点:一是定边界线;二是定方向。



http://www.00-edu.com/ks/shuxue/2/5/2019-02-12/588061.html十二生肖
十二星座