零零教育信息网 首页 > 考试 > 数学 > 初中数学 > 比较有理数的大小 > 正文 返回 打印

两个有理数a,b在数轴上的位置如图,下列说法正确的是[]A.a比0大B.b是负数C.a、b都是有理数D.b比a小-七年级数学

[db:作者]  2019-02-11 00:00:00  互联网

题文

两个有理数a,b在数轴上的位置如图,下列说法正确的是
[     ]
A.a比0大
B.b是负数
C.a、b都是有理数
D.b比a小
题型:单选题  难度:中档

答案

C

据专家权威分析,试题“两个有理数a,b在数轴上的位置如图,下列说法正确的是[]A.a比0大..”主要考查你对  比较有理数的大小,正数与负数,数轴  等考点的理解。关于这些考点的“档案”如下:

比较有理数的大小正数与负数数轴

考点名称:比较有理数的大小

  • 比较有理数大小的方法:
    有理数是整数和分数的统称,一切有理数都可以化成分数的形式。
    数轴法:
    1、在数轴上表示的两个数,右边的总比左边的数大。
    2、正数都大于零,负数都小于零,正数大于负数。

    绝对值法:
    1、两个正数比较大小,绝对值大的数大;
    2、两个负数比较大小,绝对值大的数反而小。

    差值法:
    设a、b为任意两有理数,两数做差,若a-b>0,则a>b ; 若a-b<0则a<b
    商值比较法:
    设a、b为任意两有理数,两数做商,若a/b>1,则a>b;若a/b<1,则a<b

考点名称:正数与负数

  • 正数:
    就是大于0的(实数)
    负数
    就是小于0的(实数)
    0既不是正数也不是负数。

    非负数:正数与零的统称。
    非正数:负数与零的统称。

  • 正负数的认识:
    1.对于正数和负数的概念,不能简单的理解为:带“+”号的数是正数,带“-”号的数是负数。
    例如:-a一定是负数吗?
    答案是不一定,因为字母a可以表示任意的数。
    若a表示正数时,-a是负数;
    当a表示0时,-a就是在0的前面加一个负号,仍是0,0不分正负;
    当a表示负数时,-a就不是负数了,它是一个正数。

    2.引入负数后,数的范围扩大为有理数,奇数和偶数的外延也由自然数扩大为整数,整数也可以分为奇数和偶数两类,能被2整除的数是偶数,
    如…-6,-4,-2,0,2,4,6…,不能被2整除的数是奇数,如…-5,-4,-2,1,3,5…

    3.数细分有五类:正整数、正分数、0、负整数、负分数;
    但研究问题时,通常把有理数分为三类:正数、0、负数,进行讨论。

    4.通常把正数和0统称为非负数,负数和0统称为非正数,正整数和0称为非负整数;
    负整数和0统称为非正整数。

考点名称:数轴

  • 数轴定义:
    规定了唯一的原点,正方向和单位长度的一条直线叫做数轴。
    数轴具有三要素:
    原点、正方向和单位长度,三者缺一不可。
    数轴是直线,可以向两方无限延伸,因此所有的有理数都可用数轴上的点来表示。

  • 用数轴上的点表示有理数:
    每一个有理数都可用数轴上的点来表示,表示正数的点在数轴原点的右边,表示负数的点在数轴原点的左边,原点表示数0。
    1.数轴上的点表示的数不一定都是有理数,还可能是无理数,但有理数都可用数轴上的点来表示。
    2.表示正数的点都在原点右边,表示负数的点都在原点左边。
    3.数轴上的点表示的数,右边的点表示的数总比左边的点表示的数大,因此,可借助数轴比较有理数的大小。

  • 数轴的画法
    1.画一条直线(一般画成水平的直线);
    2.在直线上根据需要选取一点为原点(在原点下面标上“0”);
    3.确定正方向(一般规定向右为正,并用箭头表示出来);
    4.选取适当的长度为单位长度,
    从原点向右,每隔一个单位长度取一点,依次表示1,2,3,…;
    从原点向左,用类似的方法依次表示-1,-2,-3,…。

  • 数轴的应用范畴:
    符号相反的两个数互为相反数,零的相反数是零。(如2的相反—2)
    在数轴上离开原点的距离就叫做这个数的绝对值。一个正数的绝对值是它本身,一个负数的相反数是它的正数,0的绝对值是0。



http://www.00-edu.com/ks/shuxue/2/6/2019-02-11/589878.html十二生肖
十二星座