题文
答案
据专家权威分析,试题“|m|=3,|n|=5,m与n异号,试求|m-n|.-数学-”主要考查你对 有理数减法,绝对值 等考点的理解。关于这些考点的“档案”如下:
有理数减法绝对值
考点名称:有理数减法
有理数减法点拨:1.引进负数之后,对于任意两个有理数都可以求出其差,不存在“不够减”的问题,并有如下结论:大数减小数,差为正数;小数减大数,差为负数;某数减去零,差为某数;零减去某数,差为某数的相反数;相等两数相减,差为零。2.在减法转化为加法时,减数必须同时变成其相反数,即“同时改变两个符号”。
考点名称:绝对值
绝对值的有关性质:①任何有理数的绝对值都是大于或等于0的数,这是绝对值的非负性; ②绝对值等于0的数只有一个,就是0; ③绝对值等于同一个正数的数有两个,这两个数互为相反数; ④互为相反数的两个数的绝对值相等。 绝对值的化简:绝对值意思是值一定为正值,按照“符号相同为正,符号相异为负”的原则来去绝对值符号。①绝对值符号里面为负,在去掉绝对值时必须要加一个负的符号老确保整个值为正值,也就是当:│a│=a (a为正值,即a≥0 时);│a│=-a (a为负值,即a≤0 时)②整数就找到这两个数的相同因数;③小数就把这两个数同时扩大相同倍数成为整数,一般都是扩大10、100倍;④分数的话就相除,得数是分数就是分子:分母,要是得数是整数,就这个数比1。