零零教育信息网 首页 > 考试 > 数学 > 初中数学 > 有理数乘法 > 正文 返回 打印

计算题.(1);(2)﹣1100﹣(1﹣0.5)××[3﹣(﹣3)2];(3)2(2x﹣3y2)﹣3(x+y2﹣1)+(2x﹣3y2)-七年级数学

[db:作者]  2019-02-16 00:00:00  互联网

题文

计算题.(1)
(2)﹣1100﹣(1﹣0.5)××[3﹣(﹣3)2];
(3)2(2x﹣3y2)﹣3(x+y2﹣1)+(2x﹣3y2
题型:计算题  难度:中档

答案

解: (1)原式=5×6××=6;
(2)原式=﹣1﹣××(3﹣9)=﹣1+1=0;
(3)原式=4x﹣6y2﹣3x﹣3y2+3+2x﹣3y2=3x﹣12y2+3.

据专家权威分析,试题“计算题.(1);(2)﹣1100﹣(1﹣0.5)××[3﹣(﹣3)2];(3)2(2x﹣3y2)﹣3(x+y..”主要考查你对  有理数乘法,有理数的混合运算,整式的加减  等考点的理解。关于这些考点的“档案”如下:

有理数乘法有理数的混合运算整式的加减

考点名称:有理数乘法

  • 有理数乘法定义:
    求两个有理数因数的积的运算叫做有理数的乘法。

  • 有理数乘法的法则:
    (1)同号两数相乘,取正号,并把绝对值相乘;
    (2)异号两数相乘,取负号,并把绝对值相乘;
    (3)任何数与0相乘都得0。
    几个不等于0的数相乘,积的符号由负因数的个数决定,当负因数有奇数个时,积为负;当负因数有偶数个时,积为正。

    有理数乘法的运算律:
    (1)交换律:ab=ba;
    (2)结合律:(ab)c=a(bc);
    (3)分配律:a(b+c)=ab+ac。

  • 记住乘法符号法则:
    1.几个不为0的数相乘,积的符号由负因数的个数决定,当负因数的个数是奇数时,积的符号为负;相反,当负因数的个数是偶数时,积的符号为正。
    2.几个数相乘,只要有一个数为0,积就是0。

    乘法法则的推广:
    1.几个不等于零的数相乘,积的符号由负因数的个数决定,当负因数有奇数个时,积为负;当负因数有偶数个时,积为正;
    2.几个数相乘,有一个因数为零,积就为零;
    3.几个不等于零的数相乘,首先确定积的符号,然后把绝对值相乘。

    有理数乘法的注意:
    1.乘法是指求几个相同加数的和的简便算法,引入负数后,乘法的意义没有改变;
    2.有理数乘法与有理数加法的运算步骤一样:确定符号、确定绝对值;
    3.掌握乘法法则的关键是会确定积的符号:“两数相乘,同号得正,异号得负”,切勿与有理数加法的符号法则混淆。

考点名称:有理数的混合运算

  • 有理数的混合运算:
    是一个运算式子中有加有减有乘有除有次方等运算方式的混合运算方式。

  • 有理数混合运算的规律:
    (1)先乘方,再乘除,最后加减;
    (2)同级运算,从左到右进行;
    (3)若有括号,先做括号内的运算,按小括号、中括号、大括号依次进行计算。

考点名称:整式的加减

  • 整式的加减:
    其实质是去括号和合并同类项,其一般步骤为:
    (1)如果有括号,那么先去括号;
    (2)如果有同类项,再合并同类项。
    注:整式加减的最后结果中不能含有同类项,即要合并到不能再合并为止。

  • 整式加减:
    整式的加减即合并同类项。把同类项相加减,不能计算的就直接拉下来。
    合并同类项时要注意以下三点:
    ①要掌握同类项的概念,会辨别同类项,并准确地掌握判断同类项的两条标准.字母和字母指数;
    ②明确合并同类项的含义是把多项式中的同类项合并成一项,经过合并同类项,式的项数会减少,达到化简多项式的目的;
    ③“合并”是指同类项的系数的相加,并把得到的结果作为新的系数,要保持同类项的字母和字母的指数不变。

  • 整式的乘除法:



http://www.00-edu.com/ks/shuxue/2/11/2019-02-16/615540.html十二生肖
十二星座