零零教育信息网 首页 > 考试 > 数学 > 初中数学 > 有理数乘法 > 正文 返回 打印

附加题:(1)计算:(﹣2)×(﹣3)=().(2)如图:已知直线AB与直线CD相交于O点,∠1=70°,则∠2=()度.-七年级数学

[db:作者]  2019-02-16 00:00:00  互联网

题文

附加题:
(1)计算:(﹣2)×(﹣3)=(    ).
(2)如图:已知直线AB与直线CD相交于O点,∠1=70°,则∠2=(    )度.
题型:填空题  难度:偏易

答案

(1)6;(2)70

据专家权威分析,试题“附加题:(1)计算:(﹣2)×(﹣3)=().(2)如图:已知直线AB与直线CD相交于..”主要考查你对  有理数乘法,对顶角,同位角,内错角,同旁内角  等考点的理解。关于这些考点的“档案”如下:

有理数乘法对顶角,同位角,内错角,同旁内角

考点名称:有理数乘法

  • 有理数乘法定义:
    求两个有理数因数的积的运算叫做有理数的乘法。

  • 有理数乘法的法则:
    (1)同号两数相乘,取正号,并把绝对值相乘;
    (2)异号两数相乘,取负号,并把绝对值相乘;
    (3)任何数与0相乘都得0。
    几个不等于0的数相乘,积的符号由负因数的个数决定,当负因数有奇数个时,积为负;当负因数有偶数个时,积为正。

    有理数乘法的运算律:
    (1)交换律:ab=ba;
    (2)结合律:(ab)c=a(bc);
    (3)分配律:a(b+c)=ab+ac。

  • 记住乘法符号法则:
    1.几个不为0的数相乘,积的符号由负因数的个数决定,当负因数的个数是奇数时,积的符号为负;相反,当负因数的个数是偶数时,积的符号为正。
    2.几个数相乘,只要有一个数为0,积就是0。

    乘法法则的推广:
    1.几个不等于零的数相乘,积的符号由负因数的个数决定,当负因数有奇数个时,积为负;当负因数有偶数个时,积为正;
    2.几个数相乘,有一个因数为零,积就为零;
    3.几个不等于零的数相乘,首先确定积的符号,然后把绝对值相乘。

    有理数乘法的注意:
    1.乘法是指求几个相同加数的和的简便算法,引入负数后,乘法的意义没有改变;
    2.有理数乘法与有理数加法的运算步骤一样:确定符号、确定绝对值;
    3.掌握乘法法则的关键是会确定积的符号:“两数相乘,同号得正,异号得负”,切勿与有理数加法的符号法则混淆。

考点名称:对顶角,同位角,内错角,同旁内角

  • 对顶角
    一个角的两边分别是另一个角的反向延升线,这两个角是对顶角两条直线相交后所得的只有一个公共顶点且两个角的两边互为反向延长线,这样的两个角叫做互为对顶角。
    两条直线相交,构成两对对顶角。互为对顶角的两个角相等(对顶角的性质)。
    对顶角是针对具有特殊位置的两个角的名称;
    对顶角相等反映的是两个角之间的大小关系。

    同位角:两个都在截线的同旁,又分别处在被截的两条直线同侧的位置的角叫做同位角。

    内错角:两个角分别在截线的两侧,且在两条被截直线之间,具有这样位置关系的一对角叫做内错角。

    同旁内角: 两个角都在截线的同一侧,且在两条被截线之间,具有这样位置关系的一对角互为同旁内角。

  • 各种角的关系图示:

    直线AB,CD与EF相交(或者说两条直线AB,CD被第三条直线EF所截),构成八个角。
    如图中,∠1与∠3,∠2与∠4是对顶角。
    其中∠1与∠5这两个角分别在AB,CD的上方,并且在EF的同侧,像这样位置相同的一对角叫做同位角;
    ∠3与∠5这两个角都在AB,CD之间,并且在EF的异侧,像这样位置的两个角叫做内错角;
    ∠3与∠6在直线AB,CD之间,并侧在EF的同侧,像这样位置的两个角叫做同旁内角。



http://www.00-edu.com/ks/shuxue/2/11/2019-02-16/615647.html十二生肖
十二星座