零零教育信息网 首页 > 考试 > 数学 > 初中数学 > 有理数除法 > 正文 返回 打印

下列算式中正确的是()A.(x2y3)5÷(xy)10=xy2B.(13)-2=19C.(0.00001)0=(9999)0D.3.24×10-5=-0.0000324-数学

[db:作者]  2019-02-16 00:00:00  零零社区

题文

下列算式中正确的是(  )
A.(x2y35÷(xy)10=xy2B.(
1
3
-2=
1
9
C.(0.00001)0=(9999)0D.3.24×10-5=-0.0000324
题型:单选题  难度:偏易

答案

A、(x2y35÷(xy)10=x10y15÷x10y10=y5,故错;
B、(
1
3
-2=9,故错;
C、(0.00001)0=1,99990=1,故(0.00001)0=(9999)0,故C对;
D、3.24×10-5=0.0000324,故不对.
故选C.

据专家权威分析,试题“下列算式中正确的是()A.(x2y3)5÷(xy)10=xy2B.(13)-2=19C.(0.000..”主要考查你对  有理数除法,有理数的乘方,科学记数法和有效数字,零指数幂(负指数幂和指数为1)  等考点的理解。关于这些考点的“档案”如下:

有理数除法有理数的乘方科学记数法和有效数字零指数幂(负指数幂和指数为1)

考点名称:有理数除法

  • 有理数除法定义:
    已知两个因数的积与其中一个因数,求另一个因数的运算叫做有理数的除法。

  • 有理数的除法法则:
    (1)除以一个数,等于乘上这个数的倒数;
    (2)两个数相除,同号得正,异号得负,并把绝对值相除;
    (3)0除以任何一个不等于0的数都等于0。

  • 有理数除法注意:
    ①0不能做除数;
    ②有理数的除法和乘法是互逆运算;
    ③在做除法运算时,根据同号得正,异号的负的法则先确定符号,在把绝对值相除,若在算式中有带分数,一般化成假分数进行计算,若不能整除,则除法运算都转化为乘法运算。

考点名称:有理数的乘方

  • 有理数乘方的定义:
    求n个相同因数的积的运算叫做乘方,乘方的结果叫做幂。在an中,a叫做底数,n叫做指数。
    22、73也可以看做是乘方运算的结果,这时它们表示数,分别读作“2的2次幂”、“7的3次幂”,其中2、7叫做底数,6、3叫做指数。
    ①习惯上把22叫做2的平方,把23叫做2的立方;
    ②当地鼠是负数或分数时,要先用括号将底数括上,再在其右上角写指数,指数要写得小些。

  • 乘方的性质:
    乘方是乘法的特例,其性质如下:
    (1)正数的任何次幂都是正数;
    (2)负数的偶次幂是正数,负数的奇次幂是负数;
    (3)0的任何(除0以外)次幂都是0;
    (4)a2是一个非负数,即a2≥0。

  • 有理数乘方法则:
    ①负数的奇次幂是负数,负数的偶次幂是正数。例如:(-2)3=-8,(-2)2=4
    ②正数的任何次幂都是正数,0的任何正整数次幂都是0.例如:22=4,23=8,03=0

    点拨:
    ①0的次幂没意义;
    ②任何有理数的偶次幂都是非负数;
    ③由于乘方是乘法的特例,因此有理数的乘方运算可以用有理数的乘法运算完成;
    ④负数的乘方与乘方的相反数不同。

  • 乘方示意图:

考点名称:科学记数法和有效数字

  • 定义
    把一个大于10的数表示成a×10n的形式(其中a是整数数位只有一位的数,n是正整数),这种计数法叫做科学记数法。
    有效数字:
    从一个数的左边非0数字其,到末尾数字止,所有数字都是这个数的有效数字。

  • 科学记数法的特点:
    (1)简单:对于数目很大的数用科学记数法的形式表示起来又科学、又简单。
    (2)科学记数法的形式是由两个数的乘积组成的,其中一个因数为a(1≤a<10,a∈N*),另一个因数为10n(n是比原来数A的整数部分少1的正整数)。
    (3)用科学记数法表示数时,不改变数的符号,只是改变数的书写形式而已。

  • 速写法:
    对于10的指数大于0的情形,数出“除了第一位以外的数位”的个数,即代表0的个数。
    如1800000000000,除最高位1外尚有12位,故科学记数法写作1.8×1012或1.8E12
    10的指数小于0的情形,数出“非有效零的总数(第一个非零数字前的所有零的总数)”
    如0.00934593,第一位非零数字(有效数字)9前面有3个零,科学记数法写作9.34593×10-3或9.34593E-3。即第一位非零数字前的0的个数为n,就为10-n(n≥0)

    科学计数法的基本运算:
    数字很大的数,一般我们用科学记数法表示,
    例如6230000000000,我们可以用6.23×1012表示,
    而它含义从直面上看是将数字6.23中6后面的小数点向右移去12位。
    若将6.23×1012写成6.23E12
    即代表将数字6.23中6后面的 小数点向右移去12位,在记数中如
    1. 3×104+4×104=7×104可以写成3E4+4E4=7E4
    即 aEc+bEc=(a+b)Ec
    2. 4×104-7×104=-3×104可以写成4E4-7E4=-3E4
    即 aEc-bEc=(a-b)Ec
    3. 3000000×600000=1800000000000
    3e6×6e5=1.8e12
    即 aEM×bEN=abE(M+N)
    4. -60000÷3000=-20
    -6E4÷3E3=-2E1
    即 aEM÷bEN=a/bE(M-N)
    5.有关的一些推导
    (aEc)2=(aEc)(aEc)=a2E2c
    (aEc)3=(aEc)(aEc)(aEc)=a3E3c
    (aEc)n=anEnc
    a×10lgb=ab
    aElgb=ab

考点名称:零指数幂(负指数幂和指数为1)

  • 零指数幂定义:任何不等于零的数的零次幂都等于1。
    负指数幂的定义:任何不等于零的数的-n(n为正整数)次幂,等于这个数的n次幂的倒数。
    指数为1:任何不等于零的数的1次幂,所得结果都等于这个数的本身。



http://www.00-edu.com/ks/shuxue/2/12/2019-02-16/620321.html十二生肖
十二星座