零零教育信息网 首页 > 考试 > 数学 > 初中数学 > 有理数的乘方 > 正文 返回 打印

下列计算正确的是[]A.﹣52=﹣25B.(﹣2)÷(﹣1)×(﹣3)=6C.2xy﹣3xy=xyD.﹣(x﹣y)=﹣x﹣y-七年级数学

[db:作者]  2019-02-19 00:00:00  零零社区

题文

下列计算正确的是
[     ]
A.﹣52=﹣25
B.(﹣2)÷(﹣1)×(﹣3)=6
C.2xy﹣3xy=xy
D.﹣(x﹣y)=﹣x﹣y
题型:单选题  难度:偏易

答案

A

据专家权威分析,试题“下列计算正确的是[]A.﹣52=﹣25B.(﹣2)÷(﹣1)×(﹣3)=6C.2xy﹣3xy=xyD.﹣..”主要考查你对  有理数的乘方,有理数的乘除混合运算,整式的加减  等考点的理解。关于这些考点的“档案”如下:

有理数的乘方有理数的乘除混合运算整式的加减

考点名称:有理数的乘方

  • 有理数乘方的定义:
    求n个相同因数的积的运算叫做乘方,乘方的结果叫做幂。在an中,a叫做底数,n叫做指数。
    22、73也可以看做是乘方运算的结果,这时它们表示数,分别读作“2的2次幂”、“7的3次幂”,其中2、7叫做底数,6、3叫做指数。
    ①习惯上把22叫做2的平方,把23叫做2的立方;
    ②当地鼠是负数或分数时,要先用括号将底数括上,再在其右上角写指数,指数要写得小些。

  • 乘方的性质:
    乘方是乘法的特例,其性质如下:
    (1)正数的任何次幂都是正数;
    (2)负数的偶次幂是正数,负数的奇次幂是负数;
    (3)0的任何(除0以外)次幂都是0;
    (4)a2是一个非负数,即a2≥0。

  • 有理数乘方法则:
    ①负数的奇次幂是负数,负数的偶次幂是正数。例如:(-2)3=-8,(-2)2=4
    ②正数的任何次幂都是正数,0的任何正整数次幂都是0.例如:22=4,23=8,03=0

    点拨:
    ①0的次幂没意义;
    ②任何有理数的偶次幂都是非负数;
    ③由于乘方是乘法的特例,因此有理数的乘方运算可以用有理数的乘法运算完成;
    ④负数的乘方与乘方的相反数不同。

  • 乘方示意图:

考点名称:有理数的乘除混合运算

  • 有理数的乘除混合运算:
    可统一化为乘法运算,在进行乘除运算时,一般地,遇除化乘,转化为有理数的乘法进行计算。

  • 乘除混合运算需要掌握:
    1.由负因数的个数确定符号;
    2.小数化成分数,带分数化成假分数;
    3.除号改成称号,除号改成倒数,变成连乘形式;
    4.进行约分;
    5.注意运算顺序,乘除为同级运算,要遵守从左到右的顺序计算;
    6.转化为乘法后,可运用乘法运算律简化运算。

考点名称:整式的加减

  • 整式的加减:
    其实质是去括号和合并同类项,其一般步骤为:
    (1)如果有括号,那么先去括号;
    (2)如果有同类项,再合并同类项。
    注:整式加减的最后结果中不能含有同类项,即要合并到不能再合并为止。

  • 整式加减:
    整式的加减即合并同类项。把同类项相加减,不能计算的就直接拉下来。
    合并同类项时要注意以下三点:
    ①要掌握同类项的概念,会辨别同类项,并准确地掌握判断同类项的两条标准.字母和字母指数;
    ②明确合并同类项的含义是把多项式中的同类项合并成一项,经过合并同类项,式的项数会减少,达到化简多项式的目的;
    ③“合并”是指同类项的系数的相加,并把得到的结果作为新的系数,要保持同类项的字母和字母的指数不变。

  • 整式的乘除法:



http://www.00-edu.com/ks/shuxue/2/14/2019-02-19/628141.html十二生肖
十二星座