零零教育信息网 首页 > 考试 > 数学 > 初中数学 > 有理数的乘方 > 正文 返回 打印

计算:(1)8+313-12+32;(2)50-15+220-45+22(3)(25+32)(25-32)(4)(2-5)2011(2+5)2012.-数学

[db:作者]  2019-02-19 00:00:00  零零社区

题文

计算:
(1)

8
+3

1
3
-
1

2
+

3
2

(2)

50
-
1

5
+2

20
-

45
+

2
2

(3)(2

5
+3

2
)(2

5
-3

2
)
(4)(2-

5
)2011(2+

5
)2012.
题型:解答题  难度:中档

答案

(1)原式=2

2
+

3
-

2
2
+

3
2

=
3
2

2
+
3
2

3


(2)原式=5

5
-
1
5

5
+4

5
-3

5
+
1
2

2

=
29
5

5
+
1
2

2


(3)原式=(2

5
2-(3

2
2
=20-18
=2,

(4)原式=(2-

5
2011(2+

5
2011(2+

5

=[(2+

5
)(2-

5
)]2011(2+

5

=-(2+

5

=-2-

5

据专家权威分析,试题“计算:(1)8+313-12+32;(2)50-15+220-45+22(3)(25+32)(25-32)(4)(..”主要考查你对  有理数的乘方,平方差公式,二次根式的加减,二次根式的加减乘除混合运算,二次根式的化简  等考点的理解。关于这些考点的“档案”如下:

有理数的乘方平方差公式二次根式的加减二次根式的加减乘除混合运算,二次根式的化简

考点名称:有理数的乘方

  • 有理数乘方的定义:
    求n个相同因数的积的运算叫做乘方,乘方的结果叫做幂。在an中,a叫做底数,n叫做指数。
    22、73也可以看做是乘方运算的结果,这时它们表示数,分别读作“2的2次幂”、“7的3次幂”,其中2、7叫做底数,6、3叫做指数。
    ①习惯上把22叫做2的平方,把23叫做2的立方;
    ②当地鼠是负数或分数时,要先用括号将底数括上,再在其右上角写指数,指数要写得小些。

  • 乘方的性质:
    乘方是乘法的特例,其性质如下:
    (1)正数的任何次幂都是正数;
    (2)负数的偶次幂是正数,负数的奇次幂是负数;
    (3)0的任何(除0以外)次幂都是0;
    (4)a2是一个非负数,即a2≥0。

  • 有理数乘方法则:
    ①负数的奇次幂是负数,负数的偶次幂是正数。例如:(-2)3=-8,(-2)2=4
    ②正数的任何次幂都是正数,0的任何正整数次幂都是0.例如:22=4,23=8,03=0

    点拨:
    ①0的次幂没意义;
    ②任何有理数的偶次幂都是非负数;
    ③由于乘方是乘法的特例,因此有理数的乘方运算可以用有理数的乘法运算完成;
    ④负数的乘方与乘方的相反数不同。

  • 乘方示意图:

考点名称:平方差公式

  • 表达式
    (a+b)(a-b)=a2-b2,两个数的和与这两个数差的积,等于这两个数的平方差,这个公式就叫做乘法的平方差公式。

  • 特点:
    (1)左边是两项式相乘,一项完全相同,另一项互为相反数;
    (2)右边是乘方中两项的平方差。
    注:
    (1)公式中的a和b可以是具体的数也可以是单项式或多项式;
    (2)不能直接应用公式的,要善于转化变形,运用公式。

  • 常见错误:
    平方差公式中常见错误有:
    ①学生难于跳出原有的定式思维,如典型错误;(错因:在公式的基础上类推,随意“创造”)
    ②混淆公式;
    ③运算结果中符号错误;
    ④变式应用难以掌握。

    注意事项:
    1、公式的左边是个两项式的积,有一项是完全相同的。
    2、右边的结果是乘式中两项的平方差,相同项的平方减去相反项的平方。
    3、公式中的a.b 可以是具体的数,也可以是单项式或多项式。

考点名称:二次根式的加减

  • 二次根式加减法法则:
    先把式子中各项二次根式化成最简二次根式,然后再合并同类二次根式。
    1、同类二次根式
    一般地,把几个二次根式化为最简二次根式后,如果它们的被开方数相同,就把这几个二次根式叫做同类二次根式。
    2、合并同类二次根式
    把几个同类二次根式合并为一个二次根式就叫做合并同类二次根式。
    3、二次根式加减时,可以先将二次根式化为最简二次根式,再将被开方数相同的进行合并。
    例如:(1);2+3=5(2)+2=3
    4、注意:有括号时,要先去括号。

  • 二次根式的加减注意:
    ①二次根式合并同类项与合并同类项类似,因此二次根式的加减可以对比整式的加减进行;
    ②二次根式加减混合运算的是指就是合并同类项二次根式,不是同类二次根式不能合并。如+是最简结果,不能再合并;
    ③二次根式进行加减运算时,根号外的系数因式须保留假分数形式,如,不能写成5
    ④合并同类二次根式后若系数为多项式,须添加括号。

考点名称:二次根式的加减乘除混合运算,二次根式的化简

  • 二次根式的加减乘除混合运算:
    顺序与师叔运算的顺序一样,先乘方,后乘除,最后算加减,有括号的先算括号内的。
    ①在运算过程中,多项式乘法,乘法公式和有理数(式)中的运算律在二次根式的运算中仍然适用。
    ②二次根式的加减乘除混合运算过程中,每个根式可以看作是一个“单项式”,多个不同类的二次根式的和可以看作“多项式”。
    ③运算结果是根式的,一般应表示为最简二次根式。
    二次根式的化简:
    先对分子、分母因式分解,能约分的就约分,能开方的就开方,或先对被开方数进行通分,然后再通过分母有理化进行化简。

  • 二次根式混合运算掌握:
    1、确定运算顺序。
    2、灵活运用运算定律。
    3、正确使用乘法公式。
    4、大多数分母有理化要及时。
    5、在有些简便运算中也许可以约分,不要盲目有理化。
    6、字母运算时注意隐含条件和末尾括号的注明。
    7、提公因式时可以考虑提带根号的公因式。

    二次根式化简方法:
    二次根式的化简是初中阶段考试必考的内容,初中竞赛的题目中也常常会考察这一内容。
    分母有理化:
    分母有理化即将分母从非有理数转化为有理数的过程,以下列出分母有理化的几种方法:
    (1)直接利用二次根式的运算法则:
    例:
    (2)利用平方差公式:
    例:
    (3)利用因式分解:
    例:(此题可运用待定系数法便于分子的分解)

    换元法(整体代入法):
    换元法即把根式中的某一部分用另一个字母代替的方法,是化简的重要方法之一。
    例:在根式中,令,即可得到
    原式=√(u2+9-6u)+√(u2+25-10u)=√(u-3)2+√(u-5)2=2u-8=2√(x+2)-8

    提公因式法:
    例:计算


    巧构常值代入法:
    例:已知x2-3x+1=0,求的值。
    分析:已知形如ax2+bx+c=0(x≠0)的条件,所求式子中含有的项,可先将ax2+bx+c=0化为x+=,即先构造一个常数,再代入求值。
    解:显然x≠0,x2-3x+1=0化为x+=3。
    原式==2.



http://www.00-edu.com/ks/shuxue/2/14/2019-02-19/633574.html十二生肖
十二星座