题文
答案
据专家权威分析,试题“下列计算错误的是()A.(a2)3=a6B.3-8=-2C.2x3?3x2=6x5D.(2a3)2=2a..”主要考查你对 有理数的乘方,单项式,立方根 等考点的理解。关于这些考点的“档案”如下:
有理数的乘方单项式立方根
考点名称:有理数的乘方
考点名称:单项式
单项式性质:1.分母含有字母的式子不属于单项式。因为单项式属于整式,而分母含有未知数的式子是分式。例如:1/x不是单项式。分母中不含字母(单项式是整式,而不是分式)a,-5,X,2XY,都是单项式,而0.5m+n,不是单项式。2.单独的一个数字或字母也是单项式。例如:1和x2y也是单项式。3.任意一个字母和数字的积的形式的代数式(除法中有:除以一个数等于乘这个数的倒数)。4.如果一个单项式,只含有字母因数,如果是正数的单项式系数为1,如果是负数的单项式系数为-1。5.如果一个单项式,只含有数字因数,那么它的次数为0。6.0也是数字,也属于单项式。7.有分数也属于单项式。单项式的次数与系数:1.单项式是字母与数的乘积。单项式的次数:一个单项式中,所有字母的指数的和叫做这个单项式的次数。单项式的系数:单项式中的数字因数。单项式是几次,就叫做几次单项式。如:2xy的系数是2;-5zy 的系数是-5字母t的指数是1,100t是一次单项式;在单项式vt中,字母v与t的指数的和是2,vt是二次单项式。如:xy ,3,a z,ab,b ...... 都是单项式。单项式书写规则:1.单项式表示数与字母相乘时,通常把数写在前面;2.乘号可以省略为点或不写;3.除法的式子可以写成分数式;4.带分数与字母相乘,带分数要化为假分数5.π是常数,因此也可以作为系数。(“π”是特指的数,不是字母,读pài。)6.当一个单项式的系数是1或-1时,“1”通常省略不写,如[(-1)ab ]写成[ -ab ]等。7.在单项式中字母不可以做分母,分子可以。字母不能在分母中(因为这样为分式,不为单项式)8.单独的数“0”的系数是零,次数也是零。9.常数的系数是它本身,次数为零。
单项式的运算法则:加减法则单项式加减即合并同类项,也就是合并前各同类项系数的和,字母不变。例如:3a+4a=7a,9a-2a=7a等。同时还要运用到去括号法则和添括号法则。乘法法则单项式相乘,把它们的系数、相同字母分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式例如:3a·4a=12a^2除法法则同底数幂相除,底数不变,指数相减。例如:9a10÷3a5=3a5
考点名称:立方根
开立方:求一个数a的立方根的运算叫做开立方,其中a叫做被开方数。立方根性质:①正数的立方根是正数;负数的立方根是负数;0的立方根是0。②一般地,如果一个数X的立方等于 a,那么这个数X就叫做a的立方根(也叫做三次方根)。也就是说,如果x3=a,那么x叫做a的立方根。如2是8的立方根,-3分之2是-27分之8的立方根,0是0的立方根。③立方和开立方运算,互为逆运算。④互为相反数的两个数的立方根也是互为相反数。⑤负数不能开平方,但能开立方。⑥任何数(正数、负数、或零)的立方根如果存在的话,必定只有一个。⑦当两个数相等时,这两个数的平方根相等,反之亦然。
笔算开立方的方法:方法一1.将被开立方数的整数部分从个位起向左每三位分为一组;2.根据最左边一组,求得立方根的最高位数;3.用第一组数减去立方根最高位数的立方,在其右边写上第二组数;4.用求得的最高位数的平方的300倍试除上述余数,得出试商;并把求得的最高位数的平方的300倍与试商的积、求得的最高位数的30倍与试商的平方的积和试商的立方写在竖式左边,观察其和是否大于余数,若大于,就减小试商再试,若不大于,试商就是立方根的第二位数;5.用同样方法继续进行下去。方法二第1、2步同上。第三步,商完后,落下余数和后面紧跟着的三位,如果后面没有就把余数后面添上三个0;第四步,将要试商的数代入式子“已商数×要试商数×(10×已商数+要试商数)×30+要商数的立方”,最接近但不超过第三步得到的数者,即为这一位要商的数。然后重复第3、4步,直到除尽。