零零教育信息网 首页 > 考试 > 数学 > 初中数学 > 有理数的乘方 > 正文 返回 打印

下列计算错误的是()A.(a2)3=a6B.3-8=-2C.2x3?3x2=6x5D.(2a3)2=2a6-数学

[db:作者]  2019-02-19 00:00:00  互联网

题文

下列计算错误的是(  )
A.(a23=a6B.
3-8

=-2
C.2x3?3x2=6x5D.(2a32=2a6
题型:单选题  难度:偏易

答案

A、(a23=a6,故本选项不符合题意;
B、
3-8

=-2,故本选项不符合题意;
C、2x3?3x2=6x5,故本选项不符合题意;
D、(2a32=4a6,故本选项符合题意.
故选D.

据专家权威分析,试题“下列计算错误的是()A.(a2)3=a6B.3-8=-2C.2x3?3x2=6x5D.(2a3)2=2a..”主要考查你对  有理数的乘方,单项式,立方根  等考点的理解。关于这些考点的“档案”如下:

有理数的乘方单项式立方根

考点名称:有理数的乘方

  • 有理数乘方的定义:
    求n个相同因数的积的运算叫做乘方,乘方的结果叫做幂。在an中,a叫做底数,n叫做指数。
    22、73也可以看做是乘方运算的结果,这时它们表示数,分别读作“2的2次幂”、“7的3次幂”,其中2、7叫做底数,6、3叫做指数。
    ①习惯上把22叫做2的平方,把23叫做2的立方;
    ②当地鼠是负数或分数时,要先用括号将底数括上,再在其右上角写指数,指数要写得小些。

  • 乘方的性质:
    乘方是乘法的特例,其性质如下:
    (1)正数的任何次幂都是正数;
    (2)负数的偶次幂是正数,负数的奇次幂是负数;
    (3)0的任何(除0以外)次幂都是0;
    (4)a2是一个非负数,即a2≥0。

  • 有理数乘方法则:
    ①负数的奇次幂是负数,负数的偶次幂是正数。例如:(-2)3=-8,(-2)2=4
    ②正数的任何次幂都是正数,0的任何正整数次幂都是0.例如:22=4,23=8,03=0

    点拨:
    ①0的次幂没意义;
    ②任何有理数的偶次幂都是非负数;
    ③由于乘方是乘法的特例,因此有理数的乘方运算可以用有理数的乘法运算完成;
    ④负数的乘方与乘方的相反数不同。

  • 乘方示意图:

考点名称:单项式

  • 单项式:
    表示数或字母的积的式子叫做单项式。
    单项式中的数字因数叫做这个单项式的系数,一个单项式中,所有字母的指数的和叫做这个单项式的次数。任何一个非零数的零次方等于1。

  • 单项式性质:
    1.分母含有字母的式子不属于单项式。因为单项式属于整式,而分母含有未知数的式子是分式。例如:1/x不是单项式。
    分母中不含字母(单项式是整式,而不是分式)
    a,-5,X,2XY,都是单项式,而0.5m+n,不是单项式。
    2.单独的一个数字或字母也是单项式。例如:1和x2y也是单项式。
    3.任意一个字母和数字的积的形式的代数式(除法中有:除以一个数等于乘这个数的倒数)。
    4.如果一个单项式,只含有字母因数,如果是正数的单项式系数为1,如果是负数的单项式系数为-1。
    5.如果一个单项式,只含有数字因数,那么它的次数为0。
    6.0也是数字,也属于单项式。
    7.有分数也属于单项式。

    单项式的次数与系数:
    1.单项式是字母与数的乘积。
    单项式的次数:一个单项式中,所有字母的指数的和叫做这个单项式的次数。
    单项式的系数:单项式中的数字因数。
    单项式是几次,就叫做几次单项式。
    如:2xy的系数是2;-5zy 的系数是-5
    字母t的指数是1,100t是一次单项式;

    在单项式vt中,字母v与t的指数的和是2,vt是二次单项式。
    如:xy ,3,a z,ab,b ...... 都是单项式。

    单项式书写规则:
    1.单项式表示数与字母相乘时,通常把数写在前面;
    2.乘号可以省略为点或不写;
    3.除法的式子可以写成分数式;
    4.带分数与字母相乘,带分数要化为假分数
    5.π是常数,因此也可以作为系数。(“π”是特指的数,不是字母,读pài。)
    6.当一个单项式的系数是1或-1时,“1”通常省略不写,如[(-1)ab ]写成[ -ab ]等。
    7.在单项式中字母不可以做分母,分子可以。字母不能在分母中(因为这样为分式,不为单项式)
    8.单独的数“0”的系数是零,次数也是零。
    9.常数的系数是它本身,次数为零。

  • 单项式的运算法则:
    加减法则
    单项式加减即合并同类项,也就是合并前各同类项系数的和,字母不变。
    例如:3a+4a=7a,9a-2a=7a等。
    同时还要运用到去括号法则和添括号法则。

    乘法法则
    单项式相乘,把它们的系数、相同字母分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式
    例如:3a·4a=12a^2

    除法法则
    同底数幂相除,底数不变,指数相减。
    例如:9a10÷3a5=3a5

考点名称:立方根

  • 定义:
    一般地,如果一个数x的立方等于a,那么这个x叫做a的立方根。
    如果一个数x的立方等于a,即x的三次方等于a(x3=a),即3个x连续相乘等于a,那么这个数x就叫做a的立方根,也叫做三次方根。
    数a的立方根记作,读作“三次根号a”。
    读作:“三次根号a”其中,a叫做被开方数,3叫做根指数。(a等于所有数,包括0)如果被开方数还有指数,那么这个指数(必须是三能约去的)还可以和三次根号约去。

  • 开立方:求一个数a的立方根的运算叫做开立方,其中a叫做被开方数。
    立方根性质
    ①正数的立方根是正数;负数的立方根是负数;0的立方根是0。
    ②一般地,如果一个数X的立方等于 a,那么这个数X就叫做a的立方根(也叫做三次方根)。
    也就是说,如果x3=a,那么x叫做a的立方根。
    如2是8的立方根,-3分之2是-27分之8的立方根,0是0的立方根。
    ③立方和开立方运算,互为逆运算。
    ④互为相反数的两个数的立方根也是互为相反数。
    ⑤负数不能开平方,但能开立方。
    ⑥任何数(正数、负数、或零)的立方根如果存在的话,必定只有一个。
    ⑦当两个数相等时,这两个数的平方根相等,反之亦然。

  • 平方根和立方根的关系:
    区别:
    ⑴根指数不同:平方根的根指数为2,且可以省略不写;立方根的根指数为3,且不能省略不写。
    ⑵ 被开方的取值范围不同:平方根中被开方数必需为非负数;立方根中被开方数可以为任何数。
    ⑶ 结果不同:平方根的结果除0之外,有两个互为相反的结果;立方根的结果只有一个。
    联系:
    二者都是与乘方运算互为逆运算
    在部分科学计算器上面需要按SHIFT键+x3才可以打出来根号。

  • 笔算开立方的方法:
    方法一
    1.将被开立方数的整数部分从个位起向左每三位分为一组;
    2.根据最左边一组,求得立方根的最高位数;
    3.用第一组数减去立方根最高位数的立方,在其右边写上第二组数;
    4.用求得的最高位数的平方的300倍试除上述余数,得出试商;并把求得的最高位数的平方的300倍与试商的积、求得的最高位数的30倍与试商的平方的积和试商的立方写在竖式左边,观察其和是否大于余数,若大于,就减小试商再试,若不大于,试商就是立方根的第二位数;
    5.用同样方法继续进行下去。
    方法二
    第1、2步同上。
    第三步,商完后,落下余数和后面紧跟着的三位,如果后面没有就把余数后面添上三个0;
    第四步,将要试商的数代入式子“已商数×要试商数×(10×已商数+要试商数)×30+要商数的立方”,最接近但不超过第三步得到的数者,即为这一位要商的数。
    然后重复第3、4步,直到除尽。



http://www.00-edu.com/ks/shuxue/2/14/2019-02-19/634407.html十二生肖
十二星座