题文
答案
据专家权威分析,试题“某自行车厂计划一周生产自行车1400辆,平均每天生产200辆,但由于..”主要考查你对 有理数的混合运算,正数与负数,有理数加法,有理数减法 等考点的理解。关于这些考点的“档案”如下:
有理数的混合运算正数与负数有理数加法有理数减法
考点名称:有理数的混合运算
考点名称:正数与负数
正数:就是大于0的(实数)负数:就是小于0的(实数)0既不是正数也不是负数。
非负数:正数与零的统称。非正数:负数与零的统称。
正负数的认识:1.对于正数和负数的概念,不能简单的理解为:带“+”号的数是正数,带“-”号的数是负数。例如:-a一定是负数吗?答案是不一定,因为字母a可以表示任意的数。若a表示正数时,-a是负数;当a表示0时,-a就是在0的前面加一个负号,仍是0,0不分正负;当a表示负数时,-a就不是负数了,它是一个正数。
2.引入负数后,数的范围扩大为有理数,奇数和偶数的外延也由自然数扩大为整数,整数也可以分为奇数和偶数两类,能被2整除的数是偶数,如…-6,-4,-2,0,2,4,6…,不能被2整除的数是奇数,如…-5,-4,-2,1,3,5…
3.数细分有五类:正整数、正分数、0、负整数、负分数;但研究问题时,通常把有理数分为三类:正数、0、负数,进行讨论。
4.通常把正数和0统称为非负数,负数和0统称为非正数,正整数和0称为非负整数;负整数和0统称为非正整数。
考点名称:有理数加法
有理数的加法法则:(1)同号两数相加,取相同的符号,并把绝对值相加;(2)绝对值不等的异号两数相加,取绝对值较大数的符号,并用较大的绝对值减去较小的绝对值;(3)互为相反的两个数相加得0;(4)一个数同0相加,仍得这个数。有理数加法的运算律:(1)加法的交换律 :a+b=b+a;(2)加法的结合律:( a+b ) +c = a + (b +c)。
几个有理数相加常用方法:①.运用加法运算律把同号的加数相加,再把异号的加数相加;②.应用运算律把可以凑整的加数相加;③.运用运算律把互为相反数的加数相加。用加法的运算律进行简便运算的基本思路:①先把互为相反数的数相加;②把同分母的分数先相加;③把符号相同的数先相加;④把相加得整数的数先相加。注意事项:有理数的加法与小学的加法有理数的加法与小学的加法大有不同,小学的加法不涉及到符号的问题,而有理数的加法运算总是涉及到两个问题:一是确定结果的符号;二是求结果的绝对值。在进行有理数加法运算时,首先判断两个加数的符号:是同号还是异号,是否有0,从而确定用那一条法则。在应用过程中,一定要牢记“先符号,后绝对值”,熟练以后就不会出错了。多个有理数的加法,可以从左向右计算,也可以用加法的运算定律计算,但是在下笔前一定要思考好,哪一个要用定律哪一个要从左往右计算。记忆要点:同号相加不变,异号相加变减。欲问符号怎么定,绝对值大号选。
考点名称:有理数减法
有理数减法点拨:1.引进负数之后,对于任意两个有理数都可以求出其差,不存在“不够减”的问题,并有如下结论:大数减小数,差为正数;小数减大数,差为负数;某数减去零,差为某数;零减去某数,差为某数的相反数;相等两数相减,差为零。2.在减法转化为加法时,减数必须同时变成其相反数,即“同时改变两个符号”。