零零教育信息网 首页 > 考试 > 数学 > 初中数学 > 有理数的混合运算 > 正文 返回 打印

(1)计算:(-12+23-14)×|-24|;(2)解分式方程:1x-1+2xx+1=2.-数学

[db:作者]  2019-02-19 00:00:00  零零社区

题文

(1)计算:(-
1
2
+
2
3
-
1
4
)×|-24|;
(2)解分式方程:
1
x-1
+
2x
x+1
=2.
题型:解答题  难度:中档

答案

(1)原式=(-
1
2
+
2
3
-
1
4
)×24=-12+16-6=-2;
(2)去分母,得:x+1+2x(x-1)=2(x2-1),
解之得:x=3.
经检验,x=3是原方程的根.

据专家权威分析,试题“(1)计算:(-12+23-14)×|-24|;(2)解分式方程:1x-1+2xx+1=2.-数学-..”主要考查你对  有理数的混合运算,解分式方程  等考点的理解。关于这些考点的“档案”如下:

有理数的混合运算解分式方程

考点名称:有理数的混合运算

  • 有理数的混合运算:
    是一个运算式子中有加有减有乘有除有次方等运算方式的混合运算方式。

  • 有理数混合运算的规律:
    (1)先乘方,再乘除,最后加减;
    (2)同级运算,从左到右进行;
    (3)若有括号,先做括号内的运算,按小括号、中括号、大括号依次进行计算。

考点名称:解分式方程

  • 解法:
    解分式方程的基本思想是把分式方程转化为整式方程,其一般步骤是:
    (1)去分母:分式方程两边同乘以方程中各分母的最简公分母,把分式方程转化为整式方程。
    (最简公分母:①系数取最小公倍数②出现的字母取最高次幂③出现的因式取最高次幂)
    (2)解方程:解整式方程,得到方程的根;
    (3)验根:将整式方程的解带入最简公分母,如果最简公分母的值不为0,则整式方程的解是原分式方程的解;
    否则,这个解不是原分式方程的解,是原分式方程的增根。
    如果分式本身约分了,也要带进去检验。
    在列分式方程解应用题时,不仅要检验所得解的是否满足方程式,还要检验是否符合题意。
    一般的,解分式方程时,去分母后所得整式方程的解有可能使原方程中分母为零,因此要将整式方程的解代入最简公分母,如果最简公分母的值不为零,则是方程的解.
    注意:
    (1)注意去分母时,不要漏乘整式项。
    (2)増根是分式方程去分母后化成的整式方程的根,但不是原分式方程的根。
    (3)増根使最简公分母等于0。

    分式方程的特殊解法:
    换元法:
    换元法是中学数学中的一个重要的数学思想,其应用非常广泛,当分式方程具有某种特殊形式,一般的去分母不易解决时,可考虑用换元法。

  • 解分式方程的基本思路是将分式方程化为整式方程,具体做法是“去分母”,即方程两边同乘最简公分母,这也是解分式方程的一般思路和做法。
    解分式方程注意:
    ①解分式方程的基本思想是把分式方程转化为整式方程,通过解整式方程进一步求得分式方程的解;
    ②用分式方程中的最简公分母同乘方程的两边,从而约去分母,但要注意用最简公分母乘方程两边各项时,切勿漏项;
    ③解分式方程可能产生使分式方程无意义的情况,那么检验就是解分式方程的必要步骤。



http://www.00-edu.com/ks/shuxue/2/15/2019-02-19/644799.html十二生肖
十二星座