题文
筐中放着2002只球,甲、乙两同学轮流取球,每次只能取1只、2只或3只球,不可多取,谁能最后一次恰好取完球,谁就获胜,甲想获胜,他应该怎样去玩这场游戏? |
题型:解答题 难度:中档
答案
、甲先拿两只,然后让乙拿,甲两次拿球时与乙所拿球之和为4,重复上面的过程,甲便可获胜. |
分析:最多取3个,那么应设计4的倍数的球让对方取,那么应先取2个,剩下4的倍数个,对方无论取几个,自己都能取4个里面剩余的个数。 解答: 甲同学先取2个球,将2000(是4的倍数)个球留给乙同学取,不记乙同学取多少个球,设为x个,甲同学总跟着取(4-x)个,这样总保证将4的倍数个球留给乙同学取,如此下去,最后一次是将4个球留给取乙同学,乙同学取后,甲同学一次取完余下的球。 点评:考查推理与论证;得到能获胜的球总数量是解决本题的突破点;得到每次取的球数与对方取的球数的关系是解决本题的关键。 |
据专家权威分析,试题“筐中放着2002只球,甲、乙两同学轮流取球,每次只能取1只、2只或..”主要考查你对 有理数的混合运算,有理数除法,有理数的乘除混合运算,有理数的乘方 等考点的理解。关于这些考点的“档案”如下:
有理数的混合运算有理数除法有理数的乘除混合运算有理数的乘方
考点名称:有理数的混合运算 考点名称:有理数除法 考点名称:有理数的乘除混合运算 考点名称:有理数的乘方
|