零零教育信息网 首页 > 考试 > 数学 > 初中数学 > 有理数的混合运算 > 正文 返回 打印

请先阅读下列一组内容,然后解答问题:先观察下列等式:11×2=1-12,12×3=12-13,13×4=13-14…19×10=19-110将以上等式两边分别相加得:11×2+12×3+13×4+…+19×10=+(12-13)+(13-14)+-数学

[db:作者]  2019-02-19 00:00:00  零零社区

题文

请先阅读下列一组内容,然后解答问题:
先观察下列等式:
1
1×2
=1-
1
2
1
2×3
=
1
2
-
1
3
1
3×4
=
1
3
-
1
4
1
9×10
=
1
9
-
1
10

将以上等式两边分别相加得:
1
1×2
+
1
2×3
+
1
3×4
+…+
1
9×10
=+(
1
2
-
1
3
)+(
1
3
-
1
4
)+…+(
1
9
-
1
10
)=
1
2
-
1
3
+
1
3
-
1
4
+…+
1
9
-
1
10
=1-
1
10
=
9
10

然后用你发现的规律解答下列问题:
(1)猜想并写出:
1
n(n-1)
=______;
(2)直接写出下列各式的计算结果:
1
1×2
+
1
2×3
+
1
3×4
+…+
1
2010×2011
=______;
1
1×2
+
1
2×3
+
1
3×4
+…+
1
n(n+1)
=______;
(3)探究并计算:
1
2×4
+
1
4×6
+
1
6×8
+…+
1
2012×2014
题型:解答题  难度:中档

答案

(1)根据题意得:
1
n(n-1)
=
1
n-1
-
1
n

(2)①原式=1-
1
2
+
1
2
-
1
3
+…+
1
2010
-
1
2011
=1-
1
2011
=
2010
2011

②原式═1-
1
2
+
1
2
-
1
3
+…+
1
n
-
1
n+1
=1-
1
n+1
=
n
n+1

(3)原式=
1
2
×(
1
2
-
1
4
+
1
4
-
1
6
+…+
1
2012
-
1
2014
)=
1
2
×(
1
2
-
1
2014
)=
503
2014

故答案为:(1)
1
n(n-1)
=
1
n-1
-
1
n
;(2)①
2010
2011
;②
n
n+1

据专家权威分析,试题“请先阅读下列一组内容,然后解答问题:先观察下列等式:11×2=1-12,..”主要考查你对  有理数的混合运算  等考点的理解。关于这些考点的“档案”如下:

有理数的混合运算

考点名称:有理数的混合运算

  • 有理数的混合运算:
    是一个运算式子中有加有减有乘有除有次方等运算方式的混合运算方式。

  • 有理数混合运算的规律:
    (1)先乘方,再乘除,最后加减;
    (2)同级运算,从左到右进行;
    (3)若有括号,先做括号内的运算,按小括号、中括号、大括号依次进行计算。



http://www.00-edu.com/ks/shuxue/2/15/2019-02-19/651067.html十二生肖
十二星座