零零教育信息网 首页 > 考试 > 数学 > 初中数学 > 近似数和有效数字 > 正文 返回 打印

下列说法中不正确的是()A.-1的倒数是-1B.-1的立方根是-1C.-π<-3.14D.用四舍五入法将16.47取近似值精确到个位是17-数学

[db:作者]  2019-02-21 00:00:00  零零社区

题文

下列说法中不正确的是(  )
A.-1的倒数是-1
B.-1的立方根是-1
C.-π<-3.14
D.用四舍五入法将16.47取近似值精确到个位是17
题型:单选题  难度:中档

答案

A、-1的倒数是-1,正确,故本选项不符合题意;
B、-1的立方根是-1,正确,故本选项不符合题意;
C、∵π>3.14,∴-π<-3.14,正确,故本选项不符合题意;
D、用四舍五入法将16.47取近似值精确到个位是16,错误,故本选项符合题意.
故选D.

据专家权威分析,试题“下列说法中不正确的是()A.-1的倒数是-1B.-1的立方根是-1C.-π<-3...”主要考查你对  近似数和有效数字,倒数,实数的比较大小,立方根  等考点的理解。关于这些考点的“档案”如下:

近似数和有效数字倒数实数的比较大小立方根

考点名称:近似数和有效数字

  • 近似数:
    一个数与准确数相近(比准确数略多或者略少些),这一个数称之为近似数。
    如:我国的人口无法计算准确数目,但是可以说出一个近似数。
    比如说我国人口有13亿,13亿就是一个近似数。

    有效数字:
    是指从该数字左边第一个非0的数字到该数字末尾的数字个数(有点绕口)。例如:
    3一共有1个有效数字,0.0003有一个有效数字,0.1500有4个有效数字,1.9×103有两个有效数字(不要被103迷惑,只需要看1.9的有效数字就可以了,10n看作是一个单位)。

    精确度:
    近似数与准确数的接近程度,可以用精确度表示。
    (1)一个近似数四舍五入到哪一位,就说这个近似数精确到哪一位;
    (2)规定有效数字的个数,也是对近似数精确程度的一种要求。

  • 有效数字注意:
    ①近似数的精确度有两种形式:精确到哪一位;保留几个有效数字;
    ②对于绝对值较大的数取近似值时,结果一般用科学计数法来表示,如:8 90 000(保留三个有效数字)的近似值,得8 903 000≈8.90×106
    ③对带有计数单位的近似数,如2.3万,他有两个有效数字:2、3,而不是五个有效数字。

  • 有效数字的舍入规则:
    1、当保留n位有效数字,若后面的数字小于第n位单位数字的0.5就舍掉。
    2、当保留n位有效数字,若后面的数字大于第n位单位数字的0.5 ,则第位数字进1。
    3、当保留n位有效数字,若后面的数字恰为第n位单位数字的0.5 ,则第n位数字若为偶数时就舍掉后面的数字,若第n位数字为奇数加1。
    如将下组数据保留三位
    45.77=45.8                               43.03=43.0
    38.25=38.2                               47.15=47.2

考点名称:倒数

  • 倒数的定义:
    如果两个数的乘积等于1,那么这两个数就叫做互为倒数。

  • 倒数性质
    (1)若a、b互为倒数,则ab=1,或,反之也成立;
    (2)0没有倒数;
    (3)乘积为-1的两个数互为负倒数,即ab=-1,则ab互为负倒数,反之也成立。

    倒数的特点
    一个正实数(1除外)加上它的倒数 一定大于2。
    理由:a/b,b/a为倒数当a>b时a/b一定大于1,可写为1+(a-b)/b。因为:
       b/a+(a-b)/a
    =b×b/a×b+(a÷b-b×b)/ab
    =(a×a-b×b+b×b)/ab
    =a×a/a×b,
    又因为a>b,
    所以a·a>a·b,
    所以a·a/a·b>1,
    所以1+(a-b)/b+a·a/a·b>2,
    所以一个正实数加上它的倒数一定大于2。
    当b>a时也一样。
    同理可证,一个负实数(-1除外)加上它的倒数一定小于-2。

  • 倒数的求法:
    1.求一个分数的倒数,例如3/4,我们只须把3/4这个分数的分子和分母交换位置,即得3/4的倒数为4/3。

    2.求一个整数的倒数,只须把这个整数看成是分母为1的分数,然后再按求分数倒数的方法即可得到。
    如12,即12/1,再把12/1这个分数的分子和分母交换位置,把分子做分母,分母做分子,则有1/12。 即12倒数是1/12。
    说明:倒数是本身的数是1和-1。(0没有倒数)

    把0.25化成分数,即1/4
    再把1/4这个分数的分子和分母交换位置,把原来的分子做分母,原来的分母做分子.则是4/1
    再把4/1化成整数,即4
    所以0.25是4的倒数。也可以说4是0.25的倒数
    也可以用1去除以这个数,例如0.25
    1/0.25等于4
    所以0.25的倒数4.
    因为乘积是1的两个数互为倒数。
    分数、整数也都使不完整用这种规律。

考点名称:实数的比较大小

  • 实数的比较大小法则:
    正实数都大于0,负实数都小于0;
    正实数大于一切负实数,两个负实数绝对值大的反而小;
    在数轴上,右边的数要比左边的大。

  • 实数比较大小的具体方法:
    (1)求差法:
    设a,b为任意两个实数,先求出a与b的差,再根据
    “当a-b<0时,a<b;当a-b=0时,a=b;当a-b>0时,a>b”来比较a与b的大小。
    (2)求商法:
    设a,b(b≠0)为任意两个正实数,先求出a与b的商,再根据
    “当<1时,a<b;当=1时,a=b;当>1时,a>b”来比较a与b的大小;
    当a,b(b≠0)为任意两个负实数时,再根据
    “当<1时,a>b;当=1时,a=b;当>1时,a<b” 来比较a与b的大小。
    (3)倒数法:
    设a,b(a≠0,b≠0)为任意两个正实数,先分别求出a与b的倒数,再根据
    “当<时,a>b;当>时,a<b。”来比较a与b的大小。
    (4)平方法:
    比较含有无理数的式子的大小时,先将要比较的两个数分别平方,再根据
    “在a>0,b>0时,可由a2>b2 得到a>b”比较大小。
    也就是说,两个正数比较大小时,如果一个数的平方比另一个数的平方大,则这个数大于另一个数。
    还有估算法、近似值法等。
    两个实数的大小比较,形式有多种多样,只要我们在实际操作时,有选择性地灵活运用上述方法,一定能方便快捷地取得令人满意的结果。
    (5)数轴比较法:
    实数与数轴上的点一一对应。
    利用这条性质,将实数的大小关系转化为点的位置关系。
    设数轴的正方向指向右方,则数轴上右边的点所表示的数比左边的点所表示的数要大。
    如图,点A表示数a,点B表示数b。因为点A在点B的右边,所以数a大于数b,即a>b.

考点名称:立方根

  • 定义:
    一般地,如果一个数x的立方等于a,那么这个x叫做a的立方根。
    如果一个数x的立方等于a,即x的三次方等于a(x3=a),即3个x连续相乘等于a,那么这个数x就叫做a的立方根,也叫做三次方根。
    数a的立方根记作,读作“三次根号a”。
    读作:“三次根号a”其中,a叫做被开方数,3叫做根指数。(a等于所有数,包括0)如果被开方数还有指数,那么这个指数(必须是三能约去的)还可以和三次根号约去。

  • 开立方:求一个数a的立方根的运算叫做开立方,其中a叫做被开方数。
    立方根性质
    ①正数的立方根是正数;负数的立方根是负数;0的立方根是0。
    ②一般地,如果一个数X的立方等于 a,那么这个数X就叫做a的立方根(也叫做三次方根)。
    也就是说,如果x3=a,那么x叫做a的立方根。
    如2是8的立方根,-3分之2是-27分之8的立方根,0是0的立方根。
    ③立方和开立方运算,互为逆运算。
    ④互为相反数的两个数的立方根也是互为相反数。
    ⑤负数不能开平方,但能开立方。
    ⑥任何数(正数、负数、或零)的立方根如果存在的话,必定只有一个。
    ⑦当两个数相等时,这两个数的平方根相等,反之亦然。

  • 平方根和立方根的关系:
    区别:
    ⑴根指数不同:平方根的根指数为2,且可以省略不写;立方根的根指数为3,且不能省略不写。
    ⑵ 被开方的取值范围不同:平方根中被开方数必需为非负数;立方根中被开方数可以为任何数。
    ⑶ 结果不同:平方根的结果除0之外,有两个互为相反的结果;立方根的结果只有一个。
    联系:
    二者都是与乘方运算互为逆运算
    在部分科学计算器上面需要按SHIFT键+x3才可以打出来根号。

  • 笔算开立方的方法:
    方法一
    1.将被开立方数的整数部分从个位起向左每三位分为一组;
    2.根据最左边一组,求得立方根的最高位数;
    3.用第一组数减去立方根最高位数的立方,在其右边写上第二组数;
    4.用求得的最高位数的平方的300倍试除上述余数,得出试商;并把求得的最高位数的平方的300倍与试商的积、求得的最高位数的30倍与试商的平方的积和试商的立方写在竖式左边,观察其和是否大于余数,若大于,就减小试商再试,若不大于,试商就是立方根的第二位数;
    5.用同样方法继续进行下去。
    方法二
    第1、2步同上。
    第三步,商完后,落下余数和后面紧跟着的三位,如果后面没有就把余数后面添上三个0;
    第四步,将要试商的数代入式子“已商数×要试商数×(10×已商数+要试商数)×30+要商数的立方”,最接近但不超过第三步得到的数者,即为这一位要商的数。
    然后重复第3、4步,直到除尽。



http://www.00-edu.com/ks/shuxue/2/16/2019-02-21/653736.html十二生肖
十二星座